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Abstract

Agents in two-sided matching games vary in characteristics that are unobservable in typical data
on matching markets. We investigate the identification of the distribution of unobserved char-
acteristics using data on who matches with whom. In full generality, we consider many-to-many
matching and matching with trades. The distribution of match-specific unobservables cannot be
fully recovered without information on unmatched agents, but the distribution of a combination
of unobservables, which we call unobserved complementarities, can be identified. Using data on
unmatched agents restores identification. We estimate the contribution of observables and unob-
servable complementarities to match production in venture capital investments in biotechnology
and medical firms.

∗Thanks to colleagues and seminar participants at various conferences and universities for helpful sugges-
tions. Our email addresses are jeremyfox@gmail.com, dhsu@wharton.upenn.edu and chnyyang@umich.edu.
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1 Introduction

Matching games model the sorting of agents to each other. Men sort to women in marriage based on
characteristics such as income, schooling, personality and physical appearance, with more desirable
men typically matching to more desirable women. Upstream firms sort to downstream firms based
on the product qualities and capacities of each of the firms. This paper is partially motivated by
such applications in industrial organization and entrepreneurial finance, where downstream firms pay
upstream firms money, and thus it is reasonable to work with transferable utility matching games
(Koopmans and Beckmann, 1957; Gale, 1960; Shapley and Shubik, 1972; Becker, 1973). In particular,
we explore an empirical application in corporate finance and management, where the upstream firms
are venture capitalists and the downstream firms are entrepreneurial biotech and medical firms.

There has been recent interest in the structural estimation of (both transferable utility and non-
transferable utility) matching games.1 The papers we cite are unified in estimating some aspect of the
preferences of agents in a matching game from data on who matches with whom as well as the observed
characteristics of agents or of matches. The sorting patterns in the data combined with assumptions
about equilibrium inform the researcher about the structural primitives in the market, namely some
function that transforms an agent’s own characteristics and its potential partner’s characteristics into
some notion of utility or output. These papers are related to, but are not special cases of, papers
estimating discrete, non-cooperative (Nash) games, like the entry literature in industrial organization
and the discrete outcomes peer effects literature.2 Matching games typically use the cooperative
solution concept of pairwise stability.3

The empirical literature cited previously structurally estimates how various structural or equilib-
rium objects, such as payoffs or preferences, are functions of the characteristics of agents observed
in the data. For example, Choo and Siow (2006) study the marriage market in the United States
and estimate how the equilibrium payoffs of men for women vary by the ages of the man and the
woman. Sørensen (2007) studies the matching of venture capitalists to entrepreneurs as a function of
observed venture capitalist experience. Fox (2010a) studies matching between automotive assemblers
(downstream firms) and car parts suppliers (upstream firms) and asks how observed specialization
measures in the portfolios of car parts sourced or supplied contribute to agent profit functions.

1See, among others: Dagsvik (2000); Boyd et al. (2013); Choo and Siow (2006); Sørensen (2007); Fox (2010a); Gordon
and Knight (2009); Chen (2013); Ho (2009); Park (2013); Yang et al. (2009); Logan et al. (2008); Levine (2009); Baccara
et al. (2012); Siow (2009); Galichon and Salanie (2012); Chiappori et al. (2015); Crawford and Yurokoglu (2012); Weese
(forthcoming); Christakis et al. (2010); Echenique et al. (2013); Uetake and Watanabe (2012); Menzel (2015); Agarwal
(2015); Agarwal and Diamond (2013); Akkus et al. (forthcoming).

2See, among others: Berry (1992); Bresnahan and Reiss (1991); Mazzeo (2002); Tamer (2003); Bajari et al. (2010);
Seim (2006); Brock and Durlauf (2007); de Paula and Tang (2012).

3Transferable utility matching games (particularly those with “contracts” or “trades” that specify endogenous product
attributes) are equivalent to models of hedonic equilibrium (Brown and Rosen, 1982; Ekeland et al., 2004; Heckman
et al., 2010; Chiappori et al., 2010). Unlike the empirical literature on hedonic equilibrium, the estimation approaches
in most matching papers do not rely on data on equilibrium prices or transfers. Compared to the current work, the
hedonic papers do not allow for unobserved characteristics.
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The above papers all use data on a relatively limited set of agent characteristics. In Choo and Siow,
personality and physical attractiveness are not measured, even though those characteristics are likely
important in determining the equilibrium pattern of marriages. Similarly, in Fox each firm’s product
quality is not directly measured and is only indirectly inferred. In Sørensen, the unobserved ability of
each venture capitalist and the business prospects of each entrepreneurial firm are not measured. If
matching based on observed characteristics is found to be important, it is a reasonable conjecture that
matching based on unobserved characteristics is also important. Our empirical work on biotech and
medical venture capital investments complements the earlier work by Sørensen on venture capital; we
estimate distributions of functions of match-specific unobservables. Ackerberg and Botticini (2002)
provide empirical evidence that farmers and landlords sort on unobservables such as risk aversion
and monitoring ability, without formally estimating a matching game or the distribution of these
unobservables.

Our discussion of the empirical applications cited above suggests that unobserved characteristics
are potentially important. As the consistency of estimation procedures for matching games depends
on assumptions on the unobservables, empirical conclusions might be more robust if the estimated
matching games allow richly specified distributions of unobserved agent heterogeneity. This paper
investigates what data on the sorting patterns between agents can tell us about the distributions
of unobserved agent characteristics relevant for sorting. In particular, we study the nonparametric
identification of distributions of unobserved agent heterogeneity in two-sided matching games. With
the distribution of unobservables, the researcher can explain sorting and construct counterfactual
predictions about market assignments. This paper allows for this empirically relevant heterogeneity
in partner preferences using data on only observed matches (who matches with whom), not data from,
say, an online dating site on rejected profiles (Hitsch et al., 2010) or on equilibrium transfers, such as
wages in a labor market (Eeckhout and Kircher, 2011). Transfers are often confidential data in firm
contracts (Fox, 2010a) and are rarely observed in marriage data (Becker, 1973).

In the following specific sense, this paper on identification is ahead of the empirical matching lit-
erature because, when this paper was first written, no empirical papers had parametrically estimated
distributions of unobserved agent characteristics, or of match characteristics without assuming inde-
pendence across matches, in matching games.4 Thus, this paper seeks to introduce a new topic for
economic investigation, rather than to simply loosen parametric restrictions in an existing empirical
literature. This paper contributes to the literature on the nonparametric (allowing infinite dimensional
objects) identification of transferable utility matching games (Fox, 2010b; Graham, 2011). Our paper
is distinguished because of its focus on identifying distributions of unobservables, rather than mostly
deterministic functions of observables. Our focus in identification on using data on many markets
with finite numbers of agents in each (transferable utility) market follows Fox (2010b).

4Agarwal (2015) and Agarwal and Diamond (2013) discuss the identification and estimation of distributions of agent
characteristics in non-transferable utility matching games with restrictions on preferences in order to ensure a unique
stable match.
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In addition to our study of identifying distributions of unobservables, there are many modeling
differences between our paper and the literature on transferable utility matching games following the
approach of Choo and Siow (2006), including Galichon and Salanie (2012), Chiappori, Salanié and
Weiss (2015), Graham (2011) and Fox (2010a). We use data on many markets with finite numbers of
players and different realizations of observables and unobservables in each market; the Choo and Siow
approach has been applied to one large market with a continuum of agents. We require at least one
continuous, observable characteristic per match or per agent; the Choo and Siow literature allows only
a finite number of observable characteristic values. The production functions corresponding to these
finite unobservables are usually recoverable without further functional form assumptions; we require a
particular match or agent characteristic to enter match production additively separably. Unobservables
in the Choo and Siow literature are typically i.i.d. shocks for the finite observable types rather than
unobserved agent characteristics or unobserved preferences on observed, ordered characteristics, such
as random coefficients. This is one interpretation of the “separability” assumption of Chiappori et al..

We first consider a baseline model, which is stripped down to focus on the key problem of iden-
tifying distributions of heterogeneity from sorting data. In our baseline transferable utility matching
game, the primitive that governs sorting is the matrix that collects the production values for each
potential match in a matching market. The production level of each match is additively separable
in observable and unobservable terms. The observable term is a match-specific characteristic. The
unknown primitive is therefore the distribution (representing randomness across markets) of the ma-
trix that collects the unobservable terms in the production of each match in a market. We call this
distribution the distribution of match-specific unobservables. Match-specific unobservables nest many
special cases, such as agent-specific unobservables.

We first show that that the distribution of match-specific unobservables is not identified in a one-to-
one matching game with data on who matches with whom but without data on unmatched or single
agents. We provide two main theoretical results and many extensions. Our first main theoretical
result states that the distribution of a change of variables of the unobservables, the distribution
of what we call unobserved complementarities, is identified. We precisely define unobserved
complementarities below. Our identification proof works by tracing the joint (across possible matches
in a market) cumulative distribution function of these unobserved complementarities using the match-
specific observables. We also show that knowledge of the distribution of unobserved complementarities
is sufficient for computing assignment probabilities. Our second main theoretical result says that
the distribution of the primitively specified, match-specific unobservables is actually identified when
unmatched agents are observed in the data.

Our main theoretical results can be intuitively understood by reference to a classic result in Becker
(1973). He studies sorting in two-sided, transferable utility matching games where agents have scalar
characteristics (types). He shows that high-type agents match to high-type agents if the types of
agents are complements in the production of matches. Many production functions for match output
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exhibit complementarities. Say in Becker’s model male and female types are xm and xw, respectively.
A production function with horizontal preferences, such as − (xm − xw)

2, and one with vertical pref-
erences, such as 2xmxw, can both have the same cross-partial derivative, here 2. Becker’s result that
complementarities alone drive sorting means that data on sorting cannot tell these two production
functions apart. In our more general class of matching games, we cannot identify the distribution
of match-specific unobservables. However, we can identify the distribution of our notion of unob-
served complementarities. These results are analogous to Becker’s results, for a more general class of
matching games.

Our second main theoretical result uses data on unmatched agents. In a matching game, agents
can unilaterally decide to be single or not. If all other agents are single and hence available to match,
the fact that one particular agent is single can only be explained by the production of all matches
involving that agent being less than the production from being single. This type of direct comparison
between the production of being single and the production of being matched is analogous to the
way identification proceeds in discrete Nash games, where the payoff of a player’s observed (in the
data) strategy must be higher than strategies not chosen, given the strategies of rivals. Thus, the
availability of data on unmatched agents introduces an element of individual rationality that maps
directly into the data and is therefore useful for identification of the primitive distribution of match-
specific characteristics.

Many empirical researchers might be tempted to specify a parametric distribution of match-specific
unobservables. Our theoretical results together suggest that estimating a matching model with a
parametric distribution of match-specific unobservables will not necessarily lead to credible estimates
without using data on unmatched agents, as a more general nonparametrically specified distribution
is not identified. Also, we present an example of a multivariate normal distribution of match-specific
characteristics whose parameters are not parametrically identified. One could instead impose a para-
metric distribution for unobserved complementarities, as we do in our empirical work on biotech and
medical venture capital.

We examine several extensions to the baseline model that add more empirical realism. Our base-
line model imposes additive separability between unobservables and observables in the production of
a match. We examine an extension where additional observed characteristics enter match production
and these characteristics may, for example, have random coefficients on them, reflecting the random
preferences of agents for partner characteristics. For example, observationally identical men are of-
ten observed to marry observationally distinct women. One important hypothesis is that these men
have heterogeneous preferences for the observable characteristics of women. In a model with random
preferences, we identify the distribution of unobserved complementarities conditional on the char-
acteristics of agents and matches other than the match-specific characteristics used in the baseline
model. Identifying a distribution of unobservables conditional on observables follows identification
work using special regressors in the multinomial choice literature (Lewbel, 2000; Matzkin, 2007; Berry
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and Haile, 2010).
In another extension, we identify fixed-across-markets but heterogeneous-within-a-market coeffi-

cients on the match-specific characteristics used in the baseline model. This relaxes the assumption
that the match-specific characteristics enter the production of each match in the same manner. An-
other extension considers models where key observables vary at the agent and not the match level and
enter match production multiplicatively. We can identify the distribution of unobserved complemen-
tarities if agent unobservables enter match production symmetrically to agent observables.

Our results on one-to-one, two-sided matching games extend naturally to many-to-many matching
(Crawford and Knoer, 1981; Sotomayor, 1992, 1999). Our application to venture capital uses the
many-to-one special case. We discuss another extension to the model of matching with trades in
Hatfield et al. (2013), who significantly generalize Kelso and Crawford (1982). In matching with the
trades, the same agent can make so-called trades both as a buyer and a seller and can have complicated
preferences over the set of trades. An individual trade generalizes a match in that a trade can list other
specifications, such as the number of startup board seats given to a venture capitalist. The matching
with trades model has many special cases and is the most general model we provide identification
results for.

We use our theoretical results to motivate an empirical investigation into matching between biotech
and medical entrepreneurs and venture capitalists. Venture capital is a key way entrepreneurial
innovation is funded. We use detailed data on the observed matches between entrepreneurial startups
and venture capitalist firms over a ten year period. We collect information on the geographic locations
of both startups and venture capitalists, on the patent stocks of startups, and on the past experience
of venture capitalists in various biotech and medical sectors. Despite these observed characteristics
being as detailed as any data set on venture capital that could realistically be collected by academic
researchers, we find that the distribution of unobserved complementarities suggests that unobserved
characteristics play a large role in match production.

2 Baseline Identification Results

We mainly analyze a two-sided, one-to-one matching game with transferable utility (Koopmans and
Beckmann, 1957; Gale, 1960; Shapley and Shubik, 1972; Becker, 1973; Roth and Sotomayor, 1990,
Chapter 8). This section imposes that all agents must be matched in order to focus purely on the
identification coming from agent sorting and not from the individual rationality decision to be single.
We also use a simple space of explanatory variables. We change these assumptions in later sections.
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2.1 Baseline Model

We use the terms “agents” and “firms” interchangeably. In a one-to-one matching game, an upstream
firm u matches with a downstream firm d. In biotech and medical venture capital, upstream firms are
venture capitalists and downstream firms are entrepreneurs. Upstream firm u and downstream firm
d can form a match 〈u, d〉. The monetary transfer from d to u is denoted as tu,d; we will not require
data on the transfers. The production or total profit from a match 〈u, d〉 is

zu,d + eu,d, (1)

where zu,d is a scalar match-specific characteristic observed in the data and eu,d is a scalar match-
specific characteristic unobserved in the data, but observable to all firms in the matching game. In
our empirical work on venture capital, one match-specific characteristic zu,d is the distance between
the headquarters of firms u and d.5 The match-specific, unobserved characteristic eu,d generalizes
special cases such as eu,d = eu · ed, where eu and ed are unobserved upstream and downstream firm
characteristics, respectively. We allow a match-specific coefficient on each zu,d and, separately, use
only agent-specific explanatory variables below.

We can more primitively model production for a match 〈u, d〉 as the sum of the profit of u and the
profit of d, where the possibly negative transfer tu,d between d and u enters additively separably into
both individual profits and therefore cancels in their sum.6 However, only production levels matter
for the matches that form, and we will not attempt to identify upstream firm profits separately from
downstream firm profits, except in the extension to matching with trades in Section 7.2.

There are N firms on each side of the market. N can also represent the set {1, . . . , N}. In this
section, there can be no unmatched firms. The matrix

z1,1 + e1,1 · · · z1,N + e1,N

...
. . .

...
zN,1 + eN,1 · · · zN,N + eN,N


describes the production of all matches in a market, where the rows are upstream firms and the

5Distance zu,d is always positive and likely enters match production with a negative sign; we can always construct
a new regressor z̃u,d = −

(
zu,d − E

[
zu,d

])
that enters with a positive sign and has mean zero.

6If the profit of u at some market outcome is πuu,d+ tu,d and the profit of d is πdu,d− tu,d, then the production of the
match 〈u, d〉 is equal to πuu,d + πdu,d = zu,d + eu,d. We will not attempt to learn the distributions of the unobservable
portions of πuu,d and πdu,d separately, except in the extension to matching with trades in Section 7.2 (Fox, 2010b).
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columns are downstream firms. Let

E =


e1,1 · · · e1,N

...
. . .

...
eN,1 · · · eN,N

 , Z =


z1,1 · · · z1,N

...
. . .

...
zN,1 · · · zN,N


be the matrices of unobservables and observables, respectively, in a market.7

A feasible one-to-one assignment A is a set of matches A = {〈u1, d1〉 , . . . , 〈uN , dN 〉}, where for
this section each firm is matched exactly once. There are N ! feasible assignments. An outcome is a
list of matches and transfers between matched agents:

{〈u1, d1, tu1,d1〉 , . . . , 〈uN , dN , tuN ,dN 〉} .

An outcome is pairwise stable if it is robust to deviations by pairs of two firms, as defined in
references such as Roth and Sotomayor (1990, Chapter 8).8 An assignment A is called pairwise
stable if there exists an underlying outcome (including transfers) that is pairwise stable.

The literature cited previously proves that the existence of a pairwise stable assignment is guaran-
teed and that an assignment A is pairwise stable if and only if it maximizes the sum of production

s (A;E,Z) =
∑
〈u,d〉∈A

(zu,d + eu,d) .

If zu,d or eu,d have continuous support, s (A;E,Z) has a unique maximizer with probability 1 and
therefore the pairwise stable assignment is unique with probability 1. The sum of the unobserved
production of assignment A relative to the particular assignment A1 = {〈1, 1〉 , . . . , 〈N,N〉} is

s̃ (A;E) =
∑
〈u,d〉∈A

eu,d −
∑

〈u,d〉∈A1

eu,d. (2)

A market is defined to be the pair (E,Z); agents in a market can match and agents in different
markets cannot. A researcher observes the assignment A and the match-specific characteristics Z for
many markets. In other words, in each matching market the researcher observes who matches with
whom A and the characteristics Z of the realized and potential matches. This allows the identification
of Pr (A | Z), the probability of assignment A being the pairwise stable assignment given the market-
level match characteristics Z. Researchers do not observe transfers, which are often part of confidential
contracts.

7Because the scalar zu,d is an element of the matrix Z, we do not use upper and lower case letters (or other notation)
to distinguish random variables and their realizations. Whether we refer to a random variable or its realization should
be clear from context.

8We omit standard definitions here that can be easily found in the literature.
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Z is independent of the unobservable matrix E. We assume that Z has full and product support,
meaning that any Z ∈ RN2

is observed.9 Each match characteristic zu,d enters production additively,
the sign and coefficient on each zu,d in production is common across matches (normalized to be 1),
each zu,d has large support, and Z is independent of E.10 Similar large support explanatory variables
have been used to prove point identification in the binary and multinomial choice literature (Manski,
1988; Ichimura and Thompson, 1998; Lewbel, 1998, 2000; Matzkin, 2007; Gautier and Kitamura, 2013;
Berry and Haile, 2010; Fox and Gandhi, forthcoming). In this literature, failure to have large support
often results in set rather than point identification of the distribution of heterogeneity.11 We discuss
the failure of the support condition in our matching context below. In this paper, we use large support
match characteristics in part to focus on reasons specific to matching games for the failure of point
identification.12

2.2 Data Generating Process

The unknown primitive whose identification we first explore is the CDF G (E), which reflects how
the match unobservables vary across matching markets. We do not restrict the support of E and we
do not assume independence across the eu,d’s within matching markets. Hence, we allow for many
special cases, such as the case eu,d = eu · ed mentioned earlier.

The probability of assignment A occurring given the match characteristics Z is

Pr (A | Z; G) =

ˆ
E

1 [Apairwise stable assignment | Z,E] d̃G (E) , (3)

where 1 [Apairwise stable assignment | Z,E] is equal to 1 when A is a pairwise stable assignment for
the market (E,Z). The symbol d̃ in d̃G stands in for the differential symbol “d” from calculus, to

9The example of the match-characteristic distance may not vary independently over all of RN2
because distance is

computed using the agent-specific characteristics latitude and longitude. In our empirical work, we use a second match-
specific characteristic that conceptually can vary independently in N2 dimensions: the past experience of a venture
capitalist with investments in the four-digit sector of a startup. Experience in a sector varies independently in N2

dimensions if all startups are in different four-digit sectors.
10We could in principle address the statistical dependence of E and Z with instrumental variables. We do not explore

this. We should mention that the eu,d and zu,d for the realized matches in the pairwise stable assignment A will likely
be statistically dependent because of the conditioning on the dependent variable A, part of the outcome to the game.

11Consider a binary choice model of buying a can of soda (or not) where the large support regressor is the (negative)
price of the soda, which varies across the dataset. If we assume that consumers’ willingnesses to pay for the can of
soda are bounded by $0 and $10, we can point identify the distribution of the willingness to pay for soda if observable
prices range between $0 and $10. If prices range only between $0 and $5, we can identify the fraction of consumers
with values above $5 by seeing the fraction who purchase at $5. We cannot identify the fraction with values above $6,
or any value greater than $5. If we do not restrict the support of the willingness to pay, we need prices to vary across
all of R (including negative prices if consumers may have negative willingnesses to pay) for point identification of the
distribution of the willingness to pay for soda.

12Our use of large support and the use of large support in most of the literature on binary and multinomial choice
does not constitute identification at infinity as used in certain proofs to study Nash games by, for example, Tamer
(2003). Identification at infinity in a Nash game uses only extreme values of regressors for all but one player to, in
effect, turn a multi-player game into a single-player decision problem. We use large explanatory variable values only to
identify the tails of distributions of heterogeneity.
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distinguish this use from our notation d for a downstream firm.
The distributionG is said to be identified whenever, forG1 6= G2, Pr

(
A | Z; G1

)
6= Pr

(
A | Z; G2

)
for some pair (A,Z). G1 and G2 give a different probability for at least one assignment A given Z. If
G has continuous and full support so that all probabilities Pr (A | Z; G) are nonzero (for every (A,Z),
s (A;E,Z) will be maximized by a range of E) and continuous in the elements of Z, the existence of one
such pair (A,Z) implies that a set of Z with positive measure satisfies Pr

(
A | Z; G1

)
6= Pr

(
A | Z; G2

)
.

All of our positive identification results will be constructive, in that we can trace a distribution
such as G (E) using variation in an object such as Z. Also, our identification arguments can be used
to prove the consistency of a nonparametric mixtures estimator for a distribution G of heterogeneous
unobservables E, as Fox, Kim and Yang (2015) show for a particular, computationally simple mixtures
estimator.13 Other mixtures estimators can be used, including maximum simulated likelihood, the
EM algorithm, NPMLE, and MCMC.14 In the empirical work on venture capital, we use the simulated
method of moments in a parametric model, because of the large numbers of firms in our matching
markets (McFadden, 1989; Pakes and Pollard, 1989).

2.3 Non-Identification of the Distribution of Match-Specific Characteris-
tics

As maximizing s (A;E,Z) determines the assignment seen in the data, the ordering of s (A;E,Z)

across assignments A as a function of E and Z is a key input to identification. We can add a constant
to the production of all matches involving the same upstream firm and the ordering of the production
s (A;E,Z) of all assignments will remain the same. This non-identification result is unsurprising: the
differential production of matches and hence assignments governs the identity of the pairwise stable
assignment in any market.

We will show another non-identification result. Consider the two realizations of matrices of unob-
servables

E1 =


e1,1 e1,2 · · · e1,N

e2,1 e2,2 · · · e2,N

...
...

. . .
...

eN,1 eN,2 · · · eN,N

 , E2 =


e1,1 e1,2 + 1 · · · e1,N

e2,1 − 1 e2,2 + 1− 1 · · · e2,N − 1
...

...
. . .

...
eN,1 eN,2 + 1 · · · eN,N

 .

13The proof of consistency in Fox et al. (2015) for one estimator requires the heterogeneous unobservable (such as
E) to have compact support, which is not required here for identification. A second estimator in Fox et al. allows the
support of E to be Rdim(E).

14For large markets, these estimators all have computational problems arising from the combinatorics underlying the
set of matching game assignments. Fox (2010a) uses a maximum score estimator to avoid these computational problems,
but does not estimate a distribution of unobservables. Our identification arguments do not address computational issues.
Likewise, random variables such as E are of large dimension and nonparametrically estimating a CDF such as G (E)
will result in a data curse of dimensionality.
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It is easy to verify that s (A;E1, Z) = s (A;E2, Z) for all A, Z, which means that the pairwise stable
assignment A is the same for E1 and E2, for any Z. Therefore it is not possible to separately identify
the relative frequencies of E1 and E2 in the data generating process; the support of the random matrix
E is too flexible.

We summarize the two counterexamples in the following non-identification proposition.

Proposition 1. The distribution G (E) of market-level unobserved match characteristics is not iden-
tified in a matching game where all agents must be matched.

Consider a simple case focusing on two upstream firms and two downstream firms. If we see the
matches 〈u1, d1〉 and 〈u2, d2〉 in the data, we cannot know whether this assignment forms because
〈u1, d1〉 has high production, 〈u2, d2〉 has high production, 〈u1, d2〉 has low production, or 〈u2, d1〉 has
low production. The non-identification result implies that parametric estimation of G (E) under these
assumptions may not be well founded, in that the generalization removing the parametric restrictions
is not identified.

2.4 Unobserved Assignment Production

The pairwise stable assignment A maximizes the function s (A;E,Z) =
∑
〈u,d〉∈A (zu,d + eu,d). This

looks like a single agent, the social planner, maximizing a utility function. Rough intuition from the
multinomial choice literature, cited earlier, suggests that the distribution H

(
S̃
)
of

S̃ = (s̃ (A2;E) , . . . , s̃ (AN !;E)) =

 ∑
〈u,d〉∈A2

eu,d −
∑

〈u,d〉∈A1

eu,d, . . . ,
∑

〈u,d〉∈AN!

eu,d −
∑

〈u,d〉∈A1

eu,d


might be identified, where the long vector S̃ collects the unobserved production of N ! − 1 assign-
ments relative to the reference assignment A1 = {〈1, 1〉 , . . . , 〈N,N〉}. Directly citing the multinomial
choice literature requires a vector of N ! − 1 assignment-specific observables with support RN !−1,
where a hypothetical assignment-specific observable would enter only s (A;E,Z) for a particular A.
Assignment-specific observables do not exist in our matching game. However, the distribution of
H
(
S̃
)
is identified using only the variation in match-specific characteristics Z assumed earlier.

Lemma 1. The distribution H
(
S̃
)
of unobserved production for all assignments is identified.

The proof, in the appendix, shows that large and product support on Z allows us to trace H
(
S̃
)
.

The identification argument is therefore constructive. Failure of large and product support results in
partial identification of H

(
S̃
)
.
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Example 1. For a running example, consider the case N = 3. The matrix of match characteristics is

E =

 e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

 .

There are six possible assignments,

A1 = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉}
A2 = {〈1, 2〉, 〈2, 1〉, 〈3, 3〉}
A3 = {〈1, 3〉, 〈2, 2〉, 〈3, 1〉}
A4 = {〈1, 2〉, 〈2, 3〉, 〈3, 1〉}
A5 = {〈1, 1〉, 〈2, 3〉, 〈3, 2〉}
A6 = {〈1, 3〉, 〈2, 1〉, 〈3, 2〉}

(4)

and

S̃ =


s̃ (A2;E)

s̃ (A3;E)

s̃ (A4;E)

s̃ (A5;E)

s̃ (A6;E)

 =


e1,2 + e2,1 + e3,3 − (e1,1 + e2,2 + e3,3)

e1,3 + e2,2 + e3,1 − (e1,1 + e2,2 + e3,3)

e1,2 + e2,3 + e3,1 − (e1,1 + e2,2 + e3,3)

e1,1 + e2,3 + e3,2 − (e1,1 + e2,2 + e3,3)

e1,3 + e2,1 + e3,2 − (e1,1 + e2,2 + e3,3)

 . (5)

Lemma 1 states that the distribution H
(
S̃
)
is identified using variation in

Z =

 z1,1 z1,2 z1,3

z2,1 z2,2 z2,3

z3,1 z3,2 z3,3

 .

4

2.5 Unobserved Complementarities

The random vector S̃ has N ! − 1 elements. Estimating a joint distribution of N ! − 1 elements is
not practical in typical datasets. We now introduce the concept of unobserved complementarities as
an intuitive, lower-dimensional random variable whose distribution is point identified if and only if
H
(
S̃
)
is point identified.

As described in the introduction, Becker (1973) shows that complementarities govern sorting when
there is one characteristic (schooling) per agent. Likewise, references such as Fox (2010b) and Graham
(2011) prove that complementarities in observed agent or match characteristics are identified using
data on matches. Likewise, while it is not possible to identify the distribution of unobserved match
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characteristics, we will show that the distribution of unobserved complementarities can be identified.

Definition. The unobserved complementarity between matches 〈u1, d1〉 and 〈u2, d2〉 is

cu1,d1,u2,d2 = eu1,d1 + eu2,d2 − (eu1,d2 + eu2,d1) . (6)

The unobserved complementarities capture the change in the unobserved production (unobserved
profits) when two matched pairs 〈u1, d1〉 and 〈u2, d2〉 exchange partners and the matches 〈u1, d2〉 and
〈u2, d1〉 arise.

Fixing a realization of the unobserved match characteristics E, one can calculate the market-level
array (of four dimensions) comprising all unobserved complementarities

C = (cu1,d1,u2,d2 | u1, u2, d1, d2 ∈ N) . (7)

We only consider values C formed from valid values of E.
There are N4 values cu1,d1,u2,d2 in C given any realization E.15 However, all unobserved comple-

mentarities can be formed from a smaller set of other unobserved complementarities by addition and
subtraction. Let

bu,d = c1,1,u,d = e1,1 + eu,d − (e1,d + eu,1) (8)

be an unobserved complementarity fixing the identities of the upstream firm u1 and the downstream
firm d1 to both be 1. Let the matrix B be

B =


b2,2 · · · b2,N
...

. . .
...

bN,2 · · · bN,N

 ,

which contains all unique values of bu,d for a market. B is a matrix of (N − 1)
2 elements. The

following lemma shows we can restrict attention to B instead of C and hence focus on identifying the
joint distribution F (B) of the heterogeneous matrix B.

Lemma 2.

1. Every element of C is a linear combination of elements of B. The specific linear combination
does not depend on the realizations of C or B.

2. For any CDF F (B), there exists G (E) generating F (B) by the appropriate change of variables
in (8).

15There are
(

N
2

)2

= N4

4
− N3

2
+ N2

4
unobserved complementarities in C with a unique pair of a pair of upstream

firms and a pair of downstream firms. This is on the order of N4.
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3. If E is a exchangeable random matrix in upstream agent indices and also exchangeable in down-
stream agent indices, then so is B.

By the first part of the lemma, we can focus on identifying the distribution of the (N − 1)
2

elements in B instead of all N4 elements in C. By the second statement in the lemma, we can restrict
attention to identifying F (B) without restrictions on the support of B or the dependence between
the elements of B, as any F (B) is compatible with some distribution G (E) of the primitive matrix of
match-specific unobservables E. Further, the third statement in the lemma shows that in the typical
empirical context where the distribution of primitive unobservables is exchangeable in agent indices,
the distribution of unobserved complementarities is also exchangeable in agent indices. The proof in
the appendix has a formal definition of exchangeability in agent indices. We now present examples of
some of the claims in the lemma.

Example. 1 (N = 3) There are 3! = 6 assignments. There are 81 unobserved complementarities
cu1,d1,u2,d2 in C.16 There are 4 unobserved complementarities in B:

B =

(
b2,2 b2,3

b3,2 b3,3

)
=(

e1,1 + e2,2 − (e1,2 + e2,1) e1,1 + e2,3 − (e1,3 + e2,1)

e1,1 + e3,2 − (e1,2 + e3,1) e1,1 + e3,3 − (e1,3 + e3,1)

)
. (9)

The first part of Lemma 2 claims that the 12 elements in C can be constructed from the 4 elements
in B. For one example,

c2,2,3,3 = e2,2 + e3,3 − (e2,3 + e3,2) = b2,2 − b2,3 − b3,2 + b3,3.

4

Example 2. Let the distribution G (E) be exchangeable in agent indices for upstream and down-
stream firms separately. Also let G (E) be multivariate normal with zero means. Under exchange-
ability, zero means and the multivariate normality of E, the variance matrix of the distribution G is

16For N = 3, the
(

N
2

)2

from the previous footnote is 9.
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parameterized by four unique parameters as

Cov (eu1,d1 , eu2,d2) = ψ1, if u1 6= u2, d1 6= d2

Cov (eu1,d1 , eu2,d1) = ψ2, if u1 6= u2

Cov (eu1,d1 , eu1,d2) = ψ3, if d1 6= d2

Var (eu1,d1) = ψ2.

One can use the properties of linear changes of variables for multivariate normal distributions to alge-
braically derive the distribution F (B) of unobserved complementarities. F (B) is itself exchangeable
in agent indices (as Lemma 2.3 states) and is multivariate normal with a variance matrix with diagonal
and off-diagonal terms

Cov (bu1,d1 , bu2,d2) =
1

4
ν2, if u1 6= u2, d1 6= d2

Cov (bu1,d1 , bu2,d1) =
1

2
ν2, if u1 6= u2

Cov (bu1,d1 , bu1,d2) =
1

2
ν2, if d1 6= d2

Var (bu1,d1) = ν2,

where the new parameter ν2 = 4
(
ψ2 + ψ1 − ψ2 − ψ3

)
. This example shows the reduction of infor-

mation from considering unobserved complementarities instead of unobserved match characteristics.
In this example, G (E) is parameterized by four parameters while the induced F (B) has only one
unknown parameter. An estimator for the parameters ψ1, ψ2, ψ3 and ψ2 will be inconsistent as only
a linear combination of those four parameters is identified. 4

2.6 Identification of Unobserved Complementarities

We have shown that H
(
S̃
)
is identified, where recall S̃ = (s̃ (A2, E) , . . . , s̃ (AN !, E)). We now show

that identification of H
(
S̃
)
gives the identification of F (B), the distribution of unobserved comple-

mentarities.
Let

r̃ (A;B) =
∑
〈u,d〉∈A

bu,d −
∑

〈u,d〉∈A1

bu,d, (10)

where for notational compactness we define bu,1 = b1,d = 0 for all u and d. The term r̃ (A;B) gives
the sum of the unobserved complementarities in B corresponding to the indices of the matches in A
minus the same sum for A1 = {〈1, 1〉 , . . . , 〈N,N〉}.

One of the main results of the paper is that the distribution F (B) of unobserved complementarities
is identified.
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Theorem 1.

1. s̃ (A;E) = r̃ (A;B) for any A and where B is formed from E.

2. r̃ (A;B1) = r̃ (A;B2) for all A if and only if B1 = B2.

3. Therefore, the distribution F (B) is identified because the distribution of H
(
S̃
)
is identified.

The proof is in the appendix. The first part of the theorem states that the sum of unobserved match
production for an assignment can be computed using the elements of B. Therefore, knowledge of B can
be used to compute pairwise stable assignments, for example for counterfactual analysis. Likewise,
knowledge of F (B) lets one calculate assignment probabilities Pr (A | Z; F ). The second part of
the theorem states that there is a one-to-one mapping between the sums of unobserved assignment
production for assignments and values of B. Therefore, as the distribution H

(
S̃
)

of the sums of
unobserved match production for assignments is identified, so is the distribution F (B) of unobserved
match complementarities.

Example. 1 (N = 3) By definition,
r̃ (A2;B)

r̃ (A3;B)

r̃ (A4;B)

r̃ (A5;B)

r̃ (A6;B)

 =


b1,2 + b2,1 + b3,3 − (b1,1 + b2,2 + b3,3)

b1,3 + b2,2 + b3,1 − (b1,1 + b2,2 + b3,3)

b1,2 + b2,3 + b3,1 − (b1,1 + b2,2 + b3,3)

b1,1 + b2,3 + b3,2 − (b1,1 + b2,2 + b3,3)

b1,3 + b2,1 + b3,2 − (b1,1 + b2,2 + b3,3)

 =


b3,3 − (b2,2 + b3,3)

b2,2 − (b2,2 + b3,3)

b2,3 − (b2,2 + b3,3)

b2,3 + b3,2 − (b2,2 + b3,3)

b3,2 − (b2,2 + b3,3)

 =


−b2,2
−b3,3

b2,3 − (b2,2 + b3,3)

b2,3 + b3,2 − (b2,2 + b3,3)

b3,2 − (b2,2 + b3,3)

 ,

(11)

where the second equality uses bu,1 = b1,d = 0 for all u and d. Then using (9) for each of the four bu,d’s
and (5) for each of the five s̃ (A;E)’s allows one to algebraically verify Theorem 1.1 for N = 3. The
interesting direction of Theorem 1.2 for N = 3 states that B1 = B2 whenever r̃ (A;B1) = r̃ (A;B2)

for all A. This direction can be verified because r̃ (A2;B) through r̃ (A5;B) can be easily solved for
the four elements of B. The less interesting direction of Theorem 1.2 always holds by the definition
of r̃ (A;B) to be a function of B. Given that we previously showed that H

(
S̃
)
is identified, F (B) is

also identified. 4

2.7 Overidentification

The distribution of unobserved match characteristics G (E) is not identified. Despite the model
primitive G (E) not being identified, the distributions H

(
S̃
)
and F (B) are not only identified, they

are overidentified. The proof of Lemma 1 works by setting H
(
S̃?
)

= Pr (A1 | Z?), where S̃? is the
point of evaluation of the CDF H, A1 is the diagonal assignment {〈1, 1〉 , . . . , 〈N,N〉} and Z? is a
specific value of Z chosen based on the value S̃?. One can identify the entire model if one only
observes, in each market, whether assignment A1 occurs or not. The assignment A1 is just one of N !
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assignments. Given the adding up constraint that the sum of probabilities of assignments is always 1,
there are N !− 2 other probabilities Pr (A | Z) for each Z available to overidentify the model.

The necessity of using only one assignment probability in a proof of identification is analogous to the
identification arguments for the single-agent multinomial choice model in the frameworks of Thompson
(1989) and Lewbel (2000). In such multinomial choice models, only the probability of a single choice
is necessary for identification. Given that choice probabilities sum to one, all but two choices provide
overidentifying restrictions. Overidentification in the semiparametric multinomial choice model has
not been formally exploited to form an operational testing procedure in finite samples. Given that
the simpler multinomial choice model should be explored before matching models, we leave the formal
exploitation of overidentification to further research.17

3 Generalizations of the Baseline Model

We consider two generalizations of the identification result for the one-to-one matching game where
all agents are matched.

3.1 Other Observed Variables X and Random Preferences

In addition to the large support, match-specific characteristics Z, researchers often observe other
match-specific and agent-specific characteristics, which we collect in the random variable X, which
we think of as a long vector. We also include in X the number of agents on each side, N , to allow the
size of the market to vary across the sample. An example of a production function augmented by the
elements of X is

(xu · xd)′ βu,d,1 + x′u,dβu,d,2 + µu,d + zu,d, (12)

where xu is a vector of upstream firm characteristics, xd is a vector of downstream firm character-
istics, xu · xd is a vector of all interactions between upstream and downstream characteristics, xu,d
is a vector of match-specific characteristics, µu,d is a random intercept capturing unobserved charac-
teristics of both u and d, and βu,d,1 and βu,d,2 are random coefficient vectors specific to the match.
The two random coefficient vectors can be the sum of the random preferences of upstream and
downstream firms for own and partner characteristics. In a marriage setting, we allow men to have
heterogeneous preferences over the observed characteristics of women, which is one explanation for
why observationally identical men marry observationally distinct women.

17Another source of overidentification arises if the researcher imposes that G (E) and hence, by Lemma 2.3, F (B)
are exchangeable in agent indices. Exchangeability in agent indices is a restriction of the class of allowable F ’s but F
is identified without assuming such a restriction.
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In this example,
X =

(
N, (xu)u∈N , (xd)d∈N , (xu,d)u,d∈N

)
.

Now we define
eu,d = (xu · xd)′ βu,d,1 + x′u,dβu,d,2 + µu,d

and, as before notationally,

cu1,d1,u2,d2 = eu1,d1 + eu2,d2 − (eu1,d2 + eu2,d1) .

Using the same notation as before, we define the array of unobserved complementarities as (7). This
definition of C, and similarly of B, now depends on the realizations of X. Our previous identification
argument in Theorem 1 does not use X. Therefore we can condition on a realization of X to identify
the conditional-on-X distribution of unobserved complementarities F (B |X). We of course require
variation in Z as before, but now Z must have full support conditional on each realization of X. We
do not require that C, B and E are independent of X, but all unobservables must still be independent
of Z conditional on X.

Corollary 1. The distribution F (B | X) of market-level unobserved complementarities conditional
on X is identified.

Our identification of distributions of heterogeneity conditional on X follows arguments in the
multinomial choice literature (Lewbel, 2000; Matzkin, 2007; Berry and Haile, 2010). This is a standard
object of identification in the cited literature

We could further attempt to unpack the identified F (B | X) into the distribution of individual
random coefficients and additive unobservables, such as the vectors βu,d,1 and βu,d,2 and the unob-
served complementarities induced only by the scalar µu,d in the example production function (12).
We would need to assume full independence between the primitive unobservables and the elements of
X. Using (12), we can think of the definition of bu,d, (8), as defining a system of (N − 1)

2 seemingly
unrelated equations, relating bu,d to the elements of X, the random coefficients and the additive unob-
servables. Masten (2015) studies in part seemingly unrelated regressions with random coefficients and
shows that the marginal distribution of each random coefficient or additive unobservable is identified
but the joint distribution of the random coefficients and additive unobservables entering all equations
is sometimes not identified. One intuition is that the number of elements of X must weakly exceed
the number of random coefficients and additive unobservables. Once F (B | X) is identified and the
problem of unpacking F into the joint distribution of random coefficients and additive unobservables
is placed in the framework of Masten (2015), the remaining identification issues are less specific to
matching and so are not considered further here.
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3.2 Heterogeneous Coefficients on Match Characteristics

We now define the production to a match 〈u, d〉 to be

eu,d + γu,d · zu,d, (13)

where γu,d 6= 0 is a match-specific coefficient. The coefficients γu,d vary across matches within each
matching market but not across markets. Therefore, the γu,d are fixed parameters to be identified
and not random coefficients. Fixing coefficients across markets but not within markets makes sense in
a context where firm indices like u and d have a consistent meaning across markets. For example, the
same set of upstream and downstream firms may participate in multiple matching markets, as in Fox
(2010a), where each market is a separate automotive component category.18 As we need the zu,d’s to
identify F (B | X), we rule out the case where any γu,d = 0.

We apply a scale normalization on production by setting γ1,1 = ±1. Because of transferable utility,
we can identify the relative scale of each match’s production. We use the matrix Γ = (γu,d)u,d∈N .
It is first important to note that parts 1 and 2 of Theorem 1 are only about the random variable
unobservables B and E and so do not involve whether zu,d has a parameter γu,d on it or not. So those
statements in Theorem 1 still hold in this more general setting. Next we state that the analog to the
identification claim in the third part of Theorem 1 holds in the setting with fixed parameters γu,d on
zu,d.

Theorem 2. The distribution F (B | X) and the fixed matrix of parameters Γ = (γu,d)u,d∈N are
identified.

The proof is in the appendix.19

4 Data on Unmatched Agents

Up until this point, we have considered matching games where all agents have to be matched. We infer
F (B | X) from sorting patterns in the data. This approach is reasonable when only data on observed
matches are available. For example, it may be unreasonable to assume that data on all potential

18In a marriage setting with different individuals in each market, we could assume that γu,d is the same for all matches
where the men are all in the same demographic class (such as college graduates) and the women are all in the same
demographic class (such as high-school graduates). This suggested use of demographic classes is partially reminiscent
of Chiappori et al. (2015), who use data over time on the US marriage market to estimate a different variance of the
type I extreme value (logit) utility errors in a Choo and Siow (2006) style model for each male demographic class and
for each female demographic class. Our suggested approach in this footnote lets γu,d vary by the intersection of male
and female demographic classes, instead of agents. For example, there could be a γage 40 men,age 30 women specific to the
listed demographic groups.

19We could also study the production function (13) when each γu,d is a random coefficient such that the random
matrix Γ =

(
γu,d

)
u,d∈N has some joint distribution J (Γ) that describes how Γ varies across markets. An identification

at infinity proof technique, where all but two zu,d’s are set to −∞, identifies the marginal distribution of each γu,d but
not the joint distribution J (Γ).
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entrants to a matching market exist. In some situations, however, researchers can also observe the
identities of unmatched agents. Data are available, for example, on potential merger partners in some
industry that do not end up undertaking mergers or on single people in a marriage market.20 When
data on unmatched agents do exist, we can go beyond unobserved complementarities B and identify
the distribution of match-specific unobservables E.

Here, X can contain separate numbers of downstream firms Nd and upstream firms Nu. Let

E =


e1,1 · · · e1,Nd

...
. . .

...
eNu,1 · · · eNu,Nd

 .

Use 〈u, 0〉 and 〈0, d〉 to denote an upstream firm and a downstream firm that are not matched. An
assignment A can be {〈u1, 0〉, 〈u2, d2〉, 〈0, d2〉}, allowing single firms. We do not require match-specific
characteristics zu,0 and z0,d for unmatched firms; they can be included in X if present.

The data generating process is still (3). One difference is that a pairwise stable assignment needs
to satisfy individual rationality: each non-singleton realized match has production greater than 0.

Theorem 3. The distribution G (E | X) of market-level unobservables is identified with data on un-
matched agents.

The proof shows that the distributionG (E | X) for someX can be traced using the probability that
all agents are unmatched, conditional on Z. The individual rationality decision to be single identifies
G (E | X) while the sorting of matched firms to other matched firms identifies only F (B | X). Using
an individual rationality condition is more similar to the utility maximization assumptions used in the
identification of single-agent discrete choice models and discrete Nash games (Lewbel, 2000; Matzkin,
2007; Berry and Haile, 2010; Berry and Tamer, 2006). An agent can unilaterally decide to become
unmatched.

5 Agent-Specific Characteristics

Return to the case with only unmatched agents in the data. Match specific z’s with full support
are not always available in datasets. For example, in our venture capital work say we observed only
patents for startups and the total experience in past deals for venture capitalists (in reality, we do
observe match characteristics). Also say, for example, that the induced match specific characteristic
zu,d = zu · zd, where zu is the upstream firm characteristic experience and zd is the downstream firm
characteristic patents. Say the long vector of agent-specific characteristics

(
(zu)u∈N , (zd)d∈N

)
has

20For example, Uetake and Watanabe (2012) study mergers between rural banks, where each county is a separate
matching market.
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support in R2N . Even this product support on agent characteristics will not allow the matrix Z with
induced match-specific characteristics zu,d = zu · zd to have support on say RN2

.
This is a problem for identification in the baseline model because the matrix of match-specific

unobservables E has N2 elements and the matrix of unobserved complementarities B has (N − 1)
2

elements. There needs to be some symmetry between the distributions of observables and unobserv-
ables in the model. More prosaically, we cannot prove Lemma 1 when Z has limited support, such as
when its constituents

(
(zu)u∈N , (zd)d∈N

)
vary only in R2N while the match-specific unobservables E

vary over RN2

.
The solution is to restrict attention to a production function where, in the primitive model, unob-

served characteristics enter symmetrically to observed characteristics. If observed characteristics vary
at the agent level, then unobserved characteristics should also be restricted to only vary at the agent
level. Taking the example of zu,d = zu · zd above, consider the production function

eu · ed + zu · zd, (14)

where eu and ed are unobserved agent-specific characteristics.21 Unobserved agent characteristics enter
symmetrically to the observed agent characteristics in the production function. Say the unobserved
agent characteristics

(
(eu)u∈N , (ed)d∈N

)
take on support on R2N . Then observed agent characteristics(

(zu)u∈N , (zd)d∈N
)
also should vary on R2N in order for slight extensions to the previous identification

arguments to go through. Specifically, one can alter the first lines of the proof of Lemma 1 and then
that lemma and hence the remainder of the identification machinery leading up to and including
Theorem 1 will apply to the agent-specific case.

Define eu,d = eu · ed and define unobserved complementarities using (6). We show that the
distribution of the matrix B of unobserved complementarities is identified.

Corollary 2. The distribution F (B | X) of unobserved complementarities B is identified in the agent-
specific case.

The short proof is in the appendix.

6 Many-to-Many Matching

Venture capitalists can make multiple investments during the same year. Likewise, startups often
contract with multiple venture capitalists, although for simplicity our application considers only the
lead venture capital investor in a startup. It is important to extend the previous results to many-to-
many, two-sided matching.

Consider a two-sided matching game where upstream firm u can make a quota of qu possible
matches and downstream firm d can make qd possible matches. The researcher has data on qu and

21All assignments would be pairwise stable if the match production was instead eu + ed + zu + zd.
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qd and the quotas can vary across firms in the same market and across markets. The previous case
of one-to-one matching is qu = qd = 1 for all firms. Leaving a quota slot unfilled gives production
of zero for that slot. The number of upstream firms Nu may differ from the number of downstream
firms Nd.

Let the production function for an individual match still be (1) and let the production of the
matches of the single upstream firm u with the pair of downstream firms d1 and d2 be equal to

zu,d1 + eu,d1 + zu,d2 + eu,d2 .

This additive separability in the production of multiple matches involving the same firm yields the
many-to-many matching model of Crawford and Knoer (1981) and Sotomayor (1992, 1999). Like in
the one-to-one case, a pairwise stable assignment is proven to exist, to be efficient and to be unique
with probability 1. Redefine the following objects to allow Nu 6= Nd :

E =


e1,1 · · · e1,Nd

...
. . .

...
eNu,1 · · · eNu,Nd

 , Z =


z1,1 · · · z1,Nd

...
. . .

...
zNu,1 · · · zNu,Nd

 , B =


b2,2 · · · b2,Nd

...
. . .

...
bNu,2 · · · bNu,Nd

 .

We also extend to many-to-many matching the model in Section 3.2, where the production of a match
between u and d is γu,d · zu,d + eu,d. The matrix of homogeneous parameters is Γ = (γu,d)u∈Nu,d∈Nd .

Say first that the number of firms, quotas and production functions are such that all firms make
a number of matches equal to their quotas: there are no unused quota slots in equilibrium. Leaving
no unused quota is feasible if

Nu∑
u=1

qu =

Nd∑
d=1

qd.

In this case, every mathematical argument for the baseline model in Section 2 and many of the
subsequent models extends to many-to-many matching. In particular, the distribution of unobserved
complementarities F (B | X) is identified using the sorting patterns in the data. Likewise, if unmatched
firms are in the data and so quota slots can be left unused, the same analysis as Section 4 applies.

Corollary 3. Consider the many-to-many matching model.

1. The distribution of unobserved complementarities F (B | X) and the coefficients Γ (if included)
are identified from data on matches only.

2. The distribution of match-specific unobservables G (E | X) is identified if unmatched firms are
in the data.

The proof is omitted as it just checks previous mathematical arguments to see that properties
unique to one-to-one matching with Nu = Nd = N are not used.
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7 Matching with Trades

Investigating a fairly general matching model is useful because many models of empirical interest will
be special cases. Consider matching with trades in the so-called trading networks model in Hatfield,
Kominers, Nichifor, Ostrovsky and Westkamp (2013), which is a significant generalization of Kelso
and Crawford (1982). In matching with trades, agents engage in trades ω from some finite set Ω. A
trade indexes the name of the buyer and the name of the seller and can specify other aspects, such as
the quality or other specifications of the goods in question. In a labor market, trades could specify
benefits such as health care plans and vacation time. In venture capital, a trade could specify the
number of board seats a startup gives a venture capitalist. Trades generalize our previous notion of a
match. We require data on all aspects of the trade; if quality is part of a trade then the qualities for
all trades in the set Ω must be measured. The price of trade ω is pω, although, as before, we study
identification when prices are not observed in the data. Prices play the same role as transfers in the
earlier matching models.

Firms are not necessarily divided into buyers and sellers ex ante; a firm can be a buyer on some
trades and a seller on other trades. In a model of mergers, a firm is not ex ante either a target
or acquirer; these roles arise endogenously as part of a stable outcome. Two-sided, many-to-many
matching is a strict special case of trading networks where the profits of an upstream firm undertaking
trades as a buyer are −∞ and, likewise, the profits of a downstream making trades as a seller are −∞.

7.1 Simple Matching with Trades

As there are no ex ante upstream and downstream firms, index a firm by i. Consider first the case
where the production of a trade ω between buyer i and seller j is

zω + eω. (15)

Notationally, the indices of i and j are subsumed into the trade ω. If a trade should give production
of −∞, we notationally remove it from Ω. This matching with trades game is a generalization of
the two-sided, many-to-many matching game in Section 6. In this simple setup, trades that give
positive production occur and trades that give negative production do not occur. We observe the
entire set of trades Ω for each market, so the data measures whether a trade occurs or does not occur;
firms that make no trades are therefore observed as well. Let the vector Z = (zω)w∈Ω and, similarly,
E = (eω)ω∈Ω . Let X collect observables entering E.

Theorem 4. Consider a trades model where the production of trade ω is zω + eω. Then G (E | X)

is identified.
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7.2 Matching with Trades Under Submodularity

We now consider matching with trades where firms have profit functions defined over portfolios of
trades. Let Ωi ⊂ Ω be the set of trades where i is either a buyer or a seller. The individual profit
of a firm i undertaking the trades Ψi ⊆ Ωi at prices pω for ω ∈ Ω is

u (i,Ψi) +
∑

ω∈Ψi→

pω −
∑

ω∈Ψ→i

pω, (16)

where the set Ψi→ is the trades in Ψi where i is the seller and Ψ→i is the trades in Ψi where i is
the buyer. Hatfield et al. prove that a stable assignment (here a set of trades) exists and is efficient
(and therefore unique with probability 1) under a condition on preferences called substitutes. A
companion paper shows that the substitutes condition is equivalent to the indirect utility (profit)
version of the direct utility (profit) in (16) being submodular for all vectors of prices, pω for ω ∈ Ω

(Hatfield, Kominers, Nichifor, Ostrovsky and Westkamp, 2015, Theorem 6). See the cited paper for
a definition of submodularity. Submodularity of the indirect utility function is restrictive for many
empirical applications. However, submodularity is only a restriction when the profit from a set of
trades is not additively separable across the trades. Therefore, the underlying direct utility firm
profits justifying the production-of-a-trade (15) in Section 7.1 imply that the corresponding indirect
utility functions are submodular.

For all firms i and trades ψi ⊆ Ωi let the pre-transfer profit (or valuation) be

u (i,Ψi) = zi,ψi
+ ei,Ψi

,

where zi,ψi
is an observable specific to firm i and the set of trades ψi and ei,ψi

is an unobservable
specific to firm i and the set of trades ψi. Let Z = (zi,ψi

)i∈N,ψi⊆Ωi
be the array of observables

corresponding to pairs of firms and sets of trades and let E = (ei,ψi
)i∈N,ψi⊆Ωi

be a similar array for
unobservables. The arrays Z and E are typically large but are always finite as the set of trades Ω is
finite. For identification, the support of −Z must be a weak superset of the support of E.22 Further,
the supports of E and Z should be restricted so that the corresponding indirect utility functions are
submodular for all players for all realizations of E and Z. We leave to other work the question of how
to enforce submodularity in empirical applications.23 As before, observable characteristics other than

22Therefore, if the support of E is a product space, then the support of −Z must contain that product space. This
is in principle a very strong requirement because zi,ψi

varies by the identity of the firm i and set of trades ψi. If
restrictions are placed on how ei,Ψi

varies across i and ψi than correspondingly less variation is needed in zi,ψi
.

23If the submodularity condition fails, a stable assignment or a competitive equilibrium as defined in Hatfield et al.
(2013) may fail to exist. One practical but perhaps inelegant approach is to ignore the lack of existence. As an example
of this approach, the important contribution by Ciliberto and Tamer (2009) estimates a Nash game of finite actions
and restricts attention to pure strategy equilibria, even though Nash’s existence theorem applies to mixed strategy
equilibria. Note that Hatfield et al. use a stability definition that is stronger than pairwise stability. Under the models
discussed earlier in the current paper, pairwise stability implies the stronger notion of stability, while the equivalence
does not hold in Hatfield et al.. Theorem 5 uses the stability definition in Hatfield et al..
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the zi,ψi are collected in a long vector X and can enter ei,ψi .
Say that the profit from making no trades is zero and that the researcher observes data on firms

that make no trades. Then the following identification result holds.

Theorem 5. The distribution of unobservables G (E | X) is upper bounded by an identified function
Ḡ (E | X) in the trading networks model. Ḡ (E | X) < 1 if, for each X and Z, there exists E with
positive probability where trades occur.

The statement means that we can identify a function Ḡ (E | X) such that G (E | X) ≤ Ḡ (E | X)

for all arrays of unobservables E and conditioning observables X. A distribution function is a prob-
ability, so the trivial bound Ḡ (E | X) = 1 satisfies this property. However, if some assignment other
than the assignment with no trades occurs with positive probability, then Ḡ (E | X) is a tighter bound
than the trivial bound of 1.24

The bound Ḡ (E | X) in the proof Theorem 5 is actually Pr (A0 | Z?, X) for some Z?, where A0

is the assignment where no trades are made. The proof of Theorem 5, in the appendix, extends the
argument in the proofs of Theorems 3 and 4. In the proofs of Theorems 3 and 4, G (E | X) itself
and not a bound equals Pr (A0 | Z?, X). This is because the unobservables eu,d in Theorem 3 and eω
in Theorem 4 correspond to the production of a match or trade, which is the sum of profits of the
two firms for the match or trade. In Theorem 5, the unobservables ei,Ψi

correspond to the profit of
an individual firm i and not the production of all firms in the trades. The theorem shows that it is
possible to identify bounds on distributions of aspects of individual firm profit functions (up to scale)
and not just aspects of production functions for matches, as in earlier results. The reason is that the
individual profit functions are not additively separable across individual trades, leaving no role for the
concept of the production of a trade.

8 Biotech and Medical Venture Capital

We estimate the roles of observed match and firm characteristics as well as the distribution of un-
observed complementarities in the biotech and medical/health venture capital industries. In these
industries, investment firms known as venture capitalists contribute money to entrepreneurial star-
tups. We seek to understand the role of venture capitalists in the productive surplus of an investment;
this contribution to match production is only present if the venture capitalist adds value over and above
offering financing. We present separate parameter estimates for the biotech and medical industries.

In most cases, the first round of venture capital funding is secured well before an entrepreneur is
ready to market its products to consumers or even to undertake a final round of testing. Therefore,
the first round venture capital funding is essential to nurturing the entrepreneur during a period where
the entrepreneur has low or no revenues of its own. We study only the identity of the lead venture

24The bound is likely not sharp. Indeed, it is possible G (E | X) is point identified and we do not know the proof.

25



capital investor in the first round of funding. This lead venture capitalist often takes more of an active
management role in the startup than other investors.

We model each life science venture capital industry as a many-to-one, two-sided matching market
where each entrepreneur is funded by the lead venture capitalist and each venture capitalist can fund
multiple startups. We lack data on unfunded startups and venture capitalists who make no invest-
ments. Because we focus on many-to-one matching and consider only matched firms, the appropriate
nonparametric identification result is the many-to-one special case of the many-to-many result in
Corollary 3.1.

Sørensen (2007) uses a structural approach to estimate a matching game between entrepreneurs
and venture capitalists. Sørensen estimates a matching game where matched agents could not ex-
change transfers, unlike the transferable utility matching game we study. His assumption is that the
unobservables are match-specific, normally distributed and independent across matches involving the
same or differing firms. By assuming independence across matches involving the same firm, Sørensen’s
model rules out that matches for many firms tend to be unobservedly more productive than matches
for many other firms. Allowing for correlation in the matches involving the same firm may be im-
portant in venture capital, as such a correlation structure allows certain firms to contribute more to
match profit than other firms. These are the high type firms: highly capable venture capitalists or
entrepreneurial firms with great prospects in the life sciences industries.

8.1 Data and Observed Characteristics

We start with a carefully collected dataset on, ideally, all venture capital transactions in the biotech
and medical industries. The data come from ThomsonOne. We then merge the venture capital data
with data from the US Patent and Trademark Office on the stock of patents held by the entrepreneurial
firms at the time of the first round investment that we model. Our data showed that the number of
venture capital deals increased substantially after 1996 and our patent data have missing records after
2008. Therefore, we use data on venture capital deals between 1997 to 2007, although we use earlier
years of data to compute venture capitalist experience.

8.2 Matching Markets

For computational reasons to be discussed, our method of simulated moments estimator can handle
only what we describe as medium sized matching markets. Therefore, our matching market definition
is made to keep the number of matches medium sized: small compared to the entire biotech and
medical venture capital industries but still large compared to the number of potential entrants in
the entry literature in industrial organization (Bresnahan and Reiss, 1991; Berry, 1992; Ciliberto and
Tamer, 2009). We define a matching market to be one of the eleven two-digit biotech sectors in
Table 1 in a particular calendar year of the data. Based on our matching market definitions, in our
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Table 1: Two Digit Biotech and Medical Sectors Used to Define Matching Markets
Biotech Medical
Human Diagnostics

Agricultural and animal Therapeutics
Industrial Health products
Biosensors Health services

Research & production equipment Pharmaceuticals
Research & other services

model venture capitalists consider matching only with the set of entrepreneurs in the same two-digit
biotech/medical sector and year that, in the data, the venture capitalist’s match partner was in.25 The
assumption that venture capitalists pre-commit to a two-digit sector is strong; relaxing the restriction
to two-digit sectors requires addressing computational concerns.26

We only consider two-digit sectors with fewer than 30 startups in a year. We estimate the model
parameters separately for the biotech and medical industries. For biotech, we have 38 matching
markets. The mean number of startups per matching market is 7.2 with a maximum of 27. The mean
number of venture capitalists per matching market is 6.8 with a maximum of 25. The 6.8 venture
capitalists per matching market is only a little lower than 7.2 startups because there are only a small
number of venture capitalists making multiple matches in the same two-digit biotech sector and year.
Now consider the medical industry, which has larger numbers of startups per two-digit sector and
year. There are 15 matching markets with fewer than 30 startups. Among those 15 markets, the
mean number of startups is 22.3 with a maximum of our chosen upper bound of 30. The mean
number of venture capitalists is 21.5 with the maximum, in the estimation sample, of 30.27

Again, we model the lead (largest) venture capital investor in the first round of venture capital
funding. Each entrepreneur appears once in the data, reflecting this first round. Each venture capital-
ist can occur multiple times. A venture capitalist can be engaged in multiple investments within a year
and can be observed in multiple years. If a venture capitalist makes multiple first round investments
as the lead investor in a given year and two-digit sector, it is treated as a single firm with a quota (the
maximum number of matches it can make) equal to the number of matches that venture capitalist
made in the data for that year and two-digit sector. A venture capitalist with a single match in the
data has a quota of one. Our model’s use of these quotas focuses on time constraints as the reason

25Our market definition differs from Sørensen (2007), who defines a matching market as a six month period in one of
two US states, California and Massachusetts. We use worldwide data and impose no limits that venture capitalists and
entrepreneurs look for partners only within one narrow geographic region, which corresponds with our data.

26Sheng (2014) is an estimator for large network games that could likely be applied to matching games in future work.
The computational savings of the estimator result in set instead of point identification in the limit, which is not in the
spirit of our paper’s theoretical results about point identification.

27We use servers with up to twenty cores for estimation. Using a cluster of multiple servers could allow us to increase
the number of agents per matching market some, but not tremendously so because of the curse of dimensionality with
computing a pairwise stable assignment to the matching game.
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a superstar venture capitalist is not the lead investor in all entrepreneurial startups. Indeed, a lead
venture capital investor takes seats on the board and an active management role in its entrepreneurial
firms. The venture capitalist has scarce time to do this and so carefully selects a small number of
investments, in the context of a matching model where it competes with other venture capitalists for
these deals.

We do not model synergies between multiple entrepreneurs matched to the same venture capitalist;
the production of a set of matches involving the same venture capitalist is equal to the sum of the
production of the individual matches, as in our Corollary 3 but not our Theorem 5. Therefore, we do
not study venture capitalist financial strategies such as portfolio diversification. We also do not model
post-matching externalities in match production caused by, say, multiple entrepreneurs competing to
treat the same, narrowly defined medical condition. It is rare for entrepreneurs in the same two-digit
sector and year of the initial investment to be directly competing in the sense of treating, say, the
same, narrowly defined medical condition. Therefore, in our model an entrepreneur cares about the
outcome of the venture capital market for matches only because it affects the entrepreneur’s own final
venture capital match and corresponding transfer, not because a rival’s match with a top venture
capitalist could create a fierce competitor for consumers.

Unlike, say, a dataset on mergers, there are no unmatched firms in our data. While presumably
there are entrepreneurial firms that fail to secure a first round of venture capital funding and venture
capitalists with the equivalent of free quota slots (say spare time to help manage an additional startup),
our data do not cover them. In what follows, our model operates as if these unmatched entrepreneurs
and venture capitalist quota slots do not exist.28

8.3 Observables in the Match Production Function

The production function for the output of a match involving one entrepreneur d and one venture
capitalist u is

±1 ·Distanceu,d+βSector ·SectorExperu,d+βExperPatents ·TotalExperu · log (Patentsd + 1)+eu,d. (17)

In this section, we discuss the contribution of each of the listed observable (in the data) variables; we
postpone a discussion of the unobservables until the next section. Overall, we feel we have collected
close to the best firm and match characteristics on a broad portion of the VC sector that academic
researchers could have access to. As we will see, even these rich characteristics will leave room for
unobservables.

Table 2 reports the means and standard deviations across realized matches for the key observable
characteristics in the production function. Estimating the matching model requires us to compute

28The matching maximum score estimator of Fox (2010a) is robust to missing data on quotas in part because it does
involve computing pairwise stable assignments as part of a nested fixed point procedure.
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Name Pre-Rescaling Rescaled
Biotech Medical Biotech Medical

Mean SD Mean SD Mean SD Mean SD
log (Patent count + 1) 0.45 0.85 0.46 0.87 -0.04 0.97 0.01 1
VC overall experience 0.06 0.12 0.07 0.14 0.22 1.19 0.25 1.36

VC four-digit sector specific experience 0.19 0.26 0.13 0.18 0.04 1.05 -0.02 0.98
Distance: km/1000 1.74 3.08 2.07 3.2 0.05 1 -0.02 1

# of Patents (no logs) 2.12 7.48 2.35 11.16
Interaction term: patents * log(patents) 0.02 1.08 0.18 1.62

Table 2: Summary Statistics for Realized Matches

these characteristics for both actual and counterfactual matches. In estimation, we rescale many of
the variables as discussed separately for each variable; the table reports the variables before and after
rescaling.29

The scale normalization of match production is in terms of the match-specific variable distance.
Distance is measured as the distance on the surface of the Earth from the headquarters of the venture
capitalist to the headquarters of the entrepreneur.30 We have worldwide data so some of these distances
are quite large: from Europe to Australia, say. Table 2 measures distance in thousands of kilometers.
Hence, the table reports that the mean distance across realized matches is around 1700 kilometers.
We allow the coefficient on distance to be either positive or negative, estimating the model once for a
positive coefficient and a second time for a negative coefficient, taking the parameter estimates with
the lowest objective function value.31 Not surprisingly, we will find that the coefficient on distance is
indeed negative. We rescale distance to have a mean of zero and standard deviation of 1.

Distance plays an important role in the venture capital literature. The literature has argued that
geographic proximity helps investors and entrepreneurs find out about each other, thereby increasing
investment likelihood (Sorenson and Stuart, 2001). Furthermore, Lerner (1995) finds that VCs are
more likely to sit on boards of their portfolio companies the closer are the companies, a finding
consistent with lower governance costs associated with geographically proximate investments. As
a result, geographic proximity is likely to be a factor in selecting investment opportunities. Such
governance considerations are likely to be especially important in empirical settings like ours in which
startup assets are mainly intangible, the length of product development can be decades, and product
development often costs hundreds of millions of dollars (Lerner, Shane and Tsai, 2003). Co-location

29The table reports summary statistics by realized matches but some rescalings are based on other samples, like all
venture capitalists or all startups for agent-specific characteristics.

30We focus on headquarters rather than branch offices (for both startups and VCs) in part for data availability reasons.
Institutionally, in many cases leaders from headquarters will need to be involved, particularly for the most important
meetings.

31As discussed in Section 3.2, the assumption that distance is valued the same across all matches is more than a mere
normalization. Using the fact that each venture capitalist appears in multiple markets, Theorem 2 allows us to identify
a coefficient on distance specific to each venture capitalist. However, all of the parameters in (17), not just distance,
have a homogeneous coefficient.
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can help for governance and monitoring reasons, as well as for facilitating the provision of value-added
business development services such as organizational professionalization (Hellmann and Puri, 2000).32

While VCs tend to specialize by factors such as the startup lifecycle stage of development, per-
haps the most-mentioned aspect of specialization is industry experience (Hsu, 2004; Sørensen, 2007).
Industry domain experience may be important in both assessing investment opportunities as well as
intermediating startup business development services (such as connecting to executive-level managers
in an industry domain or striking alliance relationships with industry incumbents) – indeed Sørensen
estimates that the former factor is twice as important as the latter in explaining the likelihood that a
startup goes public. Furthermore, Sorenson and Stuart (2001) find that industry domain experience
can allow VCs to invest in more geographically distant portfolio firms.

Our measure of a venture capitalist’s past experience in all biotech and medical sectors is equal
to the number of past deals where that venture capitalist was the lead investor in the first round,
which typically corresponds to knowledge in a startup domain. Experience is constructed using the
complete history of our data, which starts in 1960. We do not wish for our measure of experience
to trend over time, so we normalize experience each year to be between 0 and 1, with 1 being the
venture capitalist with the most experience that year and 0 being the venture capitalist with the least
experience. Table 2 reports that the mean level of the venture-capitalist specific variable experience
across realized matches (not venture capitalists) in the estimation samples are 0.06 for biotech and
0.07 for venture capital.33 This implies that the venture capitalist with the most experience in a given
year typically has around 20 times the past deals as the mean venture capitalist. In estimation, we
scale venture capitalist experience to have a mean of zero and a standard deviation of 1. This makes
the standard deviation of experience similar to the standard deviation of distance.34

We also compute the venture capitalist’s experience in the specific four-digit sector of an en-
trepreneur. There are 85 four-digit sectors in our biotech and medical data. Again, we normalize
sector-specific experience to be between 0 and 1 for each year of data by making the venture capitalist
with the most sector-specific experience have a value of 1. The mean level of four-digit, sector-specific
experience across realized matches for biotech is 0.19, or about 1/5 of the past deals of the venture
capitalist with the most sector-specific experience. For the medical industry, the mean sector-specific

32Our estimates are in units of distance instead of monetary units, such as dollars. Therefore, we cannot definitively say
that the differences we estimate in match production correspond to large differences in monetary values. Nevertheless,
the prior importance of distance in academic research on venture capital suggests that distance is economically important
in monetary terms.

33Table 2 reports summary statistics for realized matches, so a venture capitalist’s overall experience is counted twice
if the venture capitalist makes two matches in a given year.

34Total experience is a count of past matches and so could be considered to be a function of a lagged dependent
variable in another matching model where venture capitalists were allowed to be unmatched or have vacant quota slots
and so the number of matches of each venture capitalist (in addition to the identity of the startup partners) was an
outcome of the matching model. Past observed agent and match characteristics are statistically exogenous shifters of
the outcomes of past matching games and so provide exogenous variation in past matches and hence lagged dependent
variables. While this variation could lead to an approach that distinguishes venture capitalist serially correlated (over
time) unobserved heterogeneity from true state dependence from experience, we do not explore that here as we assume
that unobserved complementarities are statistically independent of experience.
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experience is 0.13. In estimation, we rescale sector specific experience to have close to a mean of
zero and a standard deviations of 1. Note that for a given venture capitalist, four-digit experience
varies across entrepreneurs within the same two-digit sector. Sector experience is therefore a match-
specific characteristic. We do not measure an entrepreneurial firm’s experience because we observe no
information on the founders of the startup.

The most important asset of an entrepreneurial startup is likely its intellectual property. Perhaps
the only way for an outside researcher to directly measure this intellectual property is to look at
patents. We have data on the number of patents held by the entrepreneurial firm at the time of the
first round of venture capital investment. The literature has identified at least two distinct roles of
patenting for startups: as a legal instrument to exclude others from using intellectual property in the
product market (or to license those rights to others in the market for technology) and as signaling
devices to capital providers. Patents are important in the biotechnology and medical industries for
both reasons (Levin et al., 1987). Table 2 shows that the mean number of patents is just over 2 for
both biotech and medical, with high standard deviations of 7.5 for biotech and 11.1 for medical. 32%
of entrepreneurs have zero patents at the time of the initial round of venture capital investment. The
production function uses the logarithm of the patent count plus one, rescaled to have a mean close to
zero and a standard deviation close to 1. We recognize that patent counts are not a perfect measure
of intellectual property; this partly motivates this paper’s focus on unobservable characteristics.

As discussed in the identification sections, complementarities between matched firms drive match-
ing. Therefore, the firm-specific but not match-specific characteristics venture capitalist experience
and startup patent count would drop out of the calculation of the production maximizing assignment
if included without interactions. The production function includes the interaction between overall
venture capital experience and the log of the patent count plus one. There may be positive comple-
mentarities between startups’ patent position and more experienced (and therefore more reputable)
venture capitalists. In patenting’s exclusionary role or in patenting’s role of facilitating markets for
technology, startups with more patents may wish to match with more experienced venture capitalists.
Similarly on the signaling side, more experienced venture capitalists may value startup patents more
highly (Hsu and Ziedonis, 2008). Table 2 reports sample statistics for the interaction term across
actual matches (not hypothetical matches). For biotech, the interaction term has a mean of around
zero and a standard deviation of 1.1. For medical, the mean is 0.2 and the standard deviation is 1.6.

8.4 Distribution of Unobserved Complementarities

In our empirical work, we will treat firm indices as having no common meaning across matching
markets. For entrepreneurs, firm indices do in fact lack meaning, as each startup appears in exactly
one matching market. Venture capitalists may appear in multiple matching markets, but we still treat
the same venture capitalist in different matching markets as being a different firm.
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The production function in (17) has match-specific unobservables. The identification argument
in Corollary 3.1 uses match-specific characteristics, which in (17) are the distance between the head-
quarters of the entrepreneur and the venture capitalist and the venture capitalist’s experience in
the entrepreneur’s four-digit sector. We impose that unobservables and observables are distributed
independently.

Given our data and approach of treating firm indices as irrelevant within a market, we impose that
the joint distribution of unobserved complementarities is exchangeable in firm indices. Lemma 2.3
states that if G (E) is unobservable in agent indices, then so is F (B). This result extends naturally to
many-to-one matching. Even though the number of venture capitalists can be less than the number
of entrepreneurs, we treat each venture capitalist as a single firm and not a number of synthetic firms
equal to the venture capitalist’s quota.35

We operationalize our ideas about exchangeability using the following parametric structure. We
assume the joint distribution F of the unobserved complementarities in B will be multivariate normal
with the following properties

Corr (bu1,d1 , bu2,d2) = ρ1, if u1 6= u2, d1 6= d2

Corr (bu1,d1 , bu2,d1) = ρ2, if u1 6= u2

Corr (bu1,d1 , bu1,d2) = ρ3, if d1 6= d2

SD (bu1,d1) = σ.

There are different correlations between pairs of unobserved complementarities depending on whether
the venture capitalists u1 and u2 are the same and whether the startups d1 and d2 are the same.
Keep in mind that the unobserved complementarity bu,d always involves the upstream firm 1 and
the downstream firm 1, in addition to the listed firms u and d. We will estimate ρ1, ρ2, ρ3 and
σ2 in addition to the parameters in the production function (17). We collect these parameters into
the vector θ = (±1, βSector, βExperPatents, ρ1, ρ2, ρ3, σ), where the ±1 corresponds to the coefficient on
distance.

By Lemma 2.2, there exists a distribution G (E) for the unobserved match characteristics that
induces our multivariate normal F (B) by the transformation (8). By Example 2, the underlying
distribution G (E) giving our F (B) is not in general the simple multivariate normal distribution in
the text of the example.

35A venture capitalist firm typically has multiple employees known as venture capitalists. Our model and data focus
on a VC firm, not its individual employees. One interpretation of eu,d might be that it includes information on the VC
employee that would be assigned to the startup if the match forms.
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8.5 Estimator

The many-to-one matching model is a special case of Sotomayor (1999), and therefore has a unique
pairwise stable assignment with probability 1. Furthermore, this pairwise stable assignment can be
computed with the linear program described in that paper. Therefore, a simulated nested fixed
point estimator is appropriate, where the objective function involves an integral over the unobserved
complementarities B and the corresponding integrand involves solving the linear program for each
realization of B.

A likelihood exists because we have fully specified the data generating process. Let the object Xm

collect all the match and firm-specific observables (including the number of firms on each side of the
market and the elements that in the discussion of identification would instead be in Z) for realized
and counterfactual matches for market m and let Am be the assignment in the data for market m.
The likelihood contribution for market m involves the computation of Pr (Am | Xm; θ), or

Pr (Am | Xm; θ) =

ˆ
B

1 [Am stable | Xm, B; θ] d̃FB (B; θ) . (18)

The indicator function 1 [Am stable | Xm, B; θ] is equal to 1 if Am is computed to be the pairwise
stable assignment for market m with draw B, using the linear program in Sotomayor (1999).

A computational challenge with the likelihood contribution (18) is that Pr (Am | Xm; θ) will typ-
ically be intractably close to 0. Consider the simple example of one-to-one matching without the
option of being unmatched. There are N ! possible assignments with N upstream and N downstream
firms. Typically, Pr (Am | Xm; θ) will be on the order of 1/N !. As N ! can be close to the number
of atoms in the universe with N = 50, the likelihood will involve the computation of intractably
small numbers. The same issue with intractably small numbers will apply to generalized method of
moments (GMM) estimators using the efficient choice of moments, which are based on the scores of
the likelihood (McFadden, 1989; Hajivassiliou and McFadden, 1998).

Instead of attempting to compute Pr (Am | Xm; θ) directly, we work with a simulated moments
estimator that uses moments that are easier to compute. Our chosen estimator is statistically inef-
ficient but is tractable to compute. Let g (A,X) be a function of an assignment A and agent and
match characteristics X that gives some market-level output. Let A (X,B; θ) be the pairwise stable
assignment of a market with observables X and unobserved complementarities B, evaluated at the
parameter θ. With data on M markets, an empirical moment as a function of θ is

Qg,M (θ) =
1

M

M∑
m=1

[ˆ
B

g (A (Xm, B; θ) , Xm) d̃FB (B; θ)− g (Am, Xm)

]
. (19)

The moment condition is that Qg,M (θ) = 0. Each choice of g indexes a separate empirical moment
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Qg,M (θ).36 The exact choices of g (A,X) are described in Appendix B.37 We have separate moments
based on agent-specific and firm-specific moments. For example, a moment might be based on the
quantiles of the match-specific characteristics for only the matches in the pairwise stable assignment.
These selections for the moments Qg,M (θ) provide an estimator that uses only the sorting patterns
captured by the choices for g. Inside the integral over the random matrix B in each moment Qg,M (θ),
the portion of the integrand g (A (Xm, B; θ) , Xm) is typically nonzero. This is unlike the integrand
of the likelihood contribution in (18), which involves an indicator function that will be be 0 for an
intractably large number of realizations of B for matching markets with the numbers of agents in our
data. Intuitively, our moments work only with agent characteristics while the likelihood contribution
(18) exploits agent indices fully to compute the exact probability of the assignment in the data. Our
estimator is statistically inefficient but easier to compute. We use the usual optimal weighting matrix
from two-step GMM.38

The integral in each moment Qg,M (θ) is approximated on the computer using simulation over
the random matrix of unobservable complementarities B (McFadden, 1989; Pakes and Pollard, 1989).
The method of simulated moments estimator is consistent for θ as M → ∞ for a fixed number of
simulation draws for the matrix B. In practice, we use Halton sequences to sample B while reducing
simulation error at the risk of introducing some small bias from the deterministic simulation draws.
The number of draws of the entire matrix B is 1000 for biotech and 500 for medical. The integral that
is simulated has a dimension equal to the number of elements in the matrix B, (Nu

m − 1) ·
(
Nd
m − 1

)
for market m. In the estimation sample, our market size cap means that the maximum number of
elements of B is 841.

The standard errors are adjusted for simulation error. The standard errors use the usual sandwich
formulas with numerical derivatives approximating the actual derivatives, as the assignment outcome
A (X,B; θ) is discrete and hence not differentiable in the simulation estimator (it is smoothed by the
integral over the multivariate normal distribution for B in an estimator without numerical integration
error). We calibrate the stepsize of the numerical derivatives to achieve somewhat decent confidence
interval coverage in the Monte Carlo studies to be discussed now.

8.6 Monte Carlo Study

We conduct a Monte Carlo study at the reported point estimates to ensure that our chosen moments
are informative in that they lead to low bias in the estimates of θ, as done, for example, in Eisenhauer,

36For readability, the above notation suppresses the reality that the dimension of the random matrix B depends on
the numbers of entrepreneurial and venture capitalist firms in Xm.

37The outcome A (X,B; θ) of an assignment being pairwise stable is discrete and hence induces a non-differentiability
in the simulated GMM objective function. We use a non-gradient based, global optimization routine known as a genetic
algorithm to maximize the function. We vary optimization routine settings, such as the population size of points, in
order to check that our estimates appear to be a global minimum.

38Simulation estimators have been used to estimate non-transferable utility matching games (Boyd et al., 2013;
Sørensen, 2007; Agarwal, 2015; Agarwal and Diamond, 2013).
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Heckman and Mosso (2015). We also use the Monte Carlo study to calibrate the stepsizes of the
numerical derivatives used for the standard errors.

We perform one Monte Carlo study based on the biotech industry and a separate Monte Carlo
study based on the medical industry. For each industry, the true parameters are taken from the
actual point estimates described below in Table 4. Each replication proceeds as follows. We randomly
sample 35 matching markets for biotech and 15 matching markets for medical; these are similar to the
numbers of matching markets used in the real data estimation. Sampling a matching market means
using the number of startups, the number of venture capitalists, the match characteristics, and the
agent characteristics from the data for that market. We then also sample a matrix B of unobserved
complementarities and compute the pairwise stable assignment. We then use the data on assignments
and observable characteristics to estimate the parameter vector θ. We conduct 100 Monte Carlo
replications for the biotech industry and, for computational reasons, 45 Monte Carlo replications for
the medical industry.

Table 3 reports the two Monte Carlo studies, one for biotech and one for medical. For each
parameter in θ, the table reports the bias, the root mean squared error (RMSE) and the coverage of
the nominal 95% confidence intervals, adjusted for simulation error. RMSE is calculated as√√√√1

I

I∑
i=1

(
θ̂syn
i − θtrue

)2

,

where θ̂syn
i is the estimator using synthetic data for the ith out of I Monte Carlo replications. Table 3

shows that our choice of moments do lead to relatively low bias and RMSE; the absolute value of bias
is always less than or equal to 0.05 for all parameter values.39 For matching markets with much larger
numbers of firms, the same number of simulation draws and the same number of markets in the data,
unreported Monte Carlo studies indicate that the finite-sample bias from simulation error will be more
substantial. Table 3 shows that the coverage of the nominal 95% confidence intervals are above 90%
for all but one parameter for the biotech industry and two parameters for the medical industry. The
RMSEs are small so we are not worried about the undercoverage on these three parameters leading
to falsely rejecting the hypothesis that a parameter is zero.

8.7 Estimates

Table 4 reports the estimates and standard errors. There are four separate sets of estimates: two
for the biotech industry and two for the medical industry. For each industry, we report estimates
without and with the term interacting startup patents and venture capitalist total experience. The

39As discussed in the section on the point estimates, the economic magnitude of Monte Carlo’s true value on the
interaction term between total experience and patents is close to zero (0.02) for the biotech industry. Therefore, the
bias of 0.01 is also small in economic magnitude even it is large compared to the true parameter in the Monte Carlo.
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Table 3: Monte Carlo Study
Biotech Medical

True Bias RMSE Cover. True Bias RMSE Cover.
Sector experience 1.28 0.04 0.15 0.98 0.31 0.03 0.10 0.80

Total experience * log(patents+1) 0.02 0.01 0.06 0.88 0.67 0.05 0.18 0.84
Standard deviation of UC 2.08 0.01 0.03 0.94 1.96 0.02 0.04 1.00

Correlation, no common firm 0.17 0.00 0.02 0.94 0.74 -0.02 0.04 0.93
Correlation, common startup 0.23 0.01 0.02 0.94 0.74 0.00 0.04 0.98
Correlation, common VC 0.94 -0.01 0.02 0.91 0.77 -0.02 0.04 0.96

Both studies uniformly sample matching markets with replacement from the corresponding real-data matching markets.

Biotech: sample size of 38 markets, 100 Monte Carlo replications.

Medical: sample size of 15 markets, 45 Monte Carlo replications

Measure Biotech Medical
Distance -1 -1 -1 -1

(-) (-) (-) (-)
Sector experience 1.32 1.28 0.22 0.31

(0.30) (0.20) (0.03) (0.06)
Total experience * log(patents+1) 0.02 0.67

(0.02) (0.11)
Standard deviation of 2.52 2.08 2.36 1.96

unobserved complementarities (0.19) (0.04) (0.17) (0.10)
Correlation 0.41 0.17 0.66 0.74

no common firms (0.06) (0.02) (0.13) (0.06)
Correlation 0.45 0.23 0.66 0.74
same startup (0.06) (0.05) (0.12) (0.06)
Correlation 0.96 0.94 0.79 0.77

same venture capitalist (0.38) (0.01) (0.08) (0.04)

Table 4: Venture Capital Parameter Estimates

parameters on the match-specific characteristics are not overly sensitive to the inclusion of the agent-
specific characteristics, so we focus on the estimates with the interaction term. The top half of Table 4
reports the estimates of the production function parameters and the bottom half reports the estimates
of the parameters of the multivariate normal distribution of unobserved complementarities.

We first consider the production function parameter estimates for the biotech industry in Table
4. Both distance and sector experience are match characteristics that have been normalized to have
a standard deviation of around 1. The point estimate of 1.28 on VC experience in the four-digit
sector of the startup indicates that sector experience is more important than distance, although the
confidence interval for the sector experience parameter contains the absolute value of the normalized
coefficient on distance, 1. The coefficient on the interaction between startup patents and venture
capitalist experience is 0.02. A change in the number of patents from 1 to 2 is equivalent to a 0.18
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change in the rescaled log of patents measure. At say a value of the rescaled VC total experience
of 0.5, this change in patents results in a change in match production of 0.02 · 0.18 · 0.5 = 0.002

units of the standard deviation of distance, an economically tiny effect. Another way to interpret the
coefficient on the interaction term is to look at the standard deviation in the value of the interaction
across realized matches, which is 1.1 in Table 2. An one standard deviation increase in the interaction
term then results in a 0.02 · 1.1 = 0.02 change in production in units of the standard deviation of
distance. Patents and total experience do not seem to play a role in match production in biotech.

Now consider the production function parameter estimates for the medical industry in Table 4. The
parameter of 0.31 on sector experience, with a low standard error, is economically and statistically
lower than the normalized coefficient of 1 on distance. So distance is more important than sector
experience in the medical industry. The coefficient on the interaction between patents and VC total
experience is 0.67, 34 times the coefficient of 0.02 in biotech. Still, the change from 1 to 2 patents
at a rescaled total VC experience of 0.5 results in a change of production of 0.06 distance standard
deviations, still not a large effect in economic magnitudes. Table 2 reports the standard deviation of the
interaction term across realized matches is 1.6. A one standard deviation change in the interaction term
then results in production increasing by 0.67·1.6 = 1.1 distance standard deviations. Interpreted using
the standard deviation of the interaction term across realized matches, the effect of the interaction
term is about the same as distance and greater than the effect of sector experience.

Next, we interpret the parameters of the multivariate normal distribution of unobserved comple-
mentarities. Recall the definition in (6): an unobserved complementarity is indexed by four firms
and is the sum and difference of unobserved match characteristics involving four matches. For the
unobserved complementarities bu,d from (8), two of the four firms are always fixed at upstream firm
1 and downstream firm 1, although firm indices have no meaning across markets in our analysis. The
other two firms, the u and d in bu,d, vary across the unobserved complementarities in the matrix B.
Interpreting the distribution of unobserved complementarities requires subtlety; it is easier to think
in terms of unobserved match characteristics. Unfortunately, the distribution of unobserved match
characteristics is not identified.

Consider the standard deviations of the unobserved complementarities. For biotech, the standard
deviation is 2.08, with a small standard error. The standard deviation can be interpreted to mean,
in a loose sense, that unobserved complementarities are twice as important as distance, which has
a coefficient of -1 and a standard deviation of 1. In the same loose sense, the point estimate is
that unobserved complementarities are 2.08/1.28 = 1.6 times as important as sector experience. For
the medical industry, the standard deviation of unobserved complementarities is 1.96, meaning that,
again in a loose sense, that unobserved complementarities are twice as important as distance and
2.08/0.31 = 6.3 times as important as sector experience.

There are three correlation parameters in the multivariate normal distribution. The first correlation
is Corr (bu1,d1 , bu2,d2), the correlation between two unobserved complementarities when neither of
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the upstream firms or downstream firms (other than upstream firm 1 and downstream firm 1) are
the same. For biotech, this correlation is positive and low, at 0.17, with a small standard error.
Presumably the positive correlation reflects the presence of upstream firm 1 and downstream firm 1
in all unobserved complementarities bu,d. For the medical industry, the correlation is much higher,
at 0.74, also with a low standard error. When upstream firm 1 and downstream firm 1 contribute to
unobserved complementarities in one set of four matches, they do so in others.

The second correlation is Corr (bu1,d1 , bu2,d1), the correlation between two unobserved complemen-
tarities when the startup is the same. The correlation for biotech of 0.23 has the same sign but is lower
than the correlation for the medical industry of 0.74. The third correlation is Corr (bu1,d1 , bu1,d2), the
correlation between two unobserved complementarities when the venture capitalist is the same. For
biotech, this correlation of 0.94 is quite high. For the medical industry, the correlation of 0.77 is
a little lower. For biotech, the correlation between two complementarities involving upstream firm
1, downstream firm 1 and the same venture capitalist is much higher than the correlation between
complementarities involving upstream firm 1, downstream firm 1 and the same startup as well as the
correlation when only upstream firm 1 and downstream firm 1 are the same. This seems to mean
that venture capitalists are playing more of systematic role in unobserved complementarities across
a variety of sets of four matches than the more idiosyncratic role of startups. In the medical indus-
try, the three correlations are all high and about the same. The distribution of B is close to being
equicorrelated and hence exchangeable in all the elements of B, not just exchangeable in the agent
indices (which is imposed by our choice of distribution).

8.8 Discussion of Unobserved Complementarities

The somewhat subtle interpretation of the estimated distribution of unobserved complementarities
showcases the loss of information from using data on only matched agents, which is common in
empirical work on matching. Nevertheless, the distribution of unobserved complementarities is in
the same units as the contribution of observables to the production function and the two can be
compared. For both the biotech and medical industries, we found that the standard deviation of
unobserved complementarities was greater than the individual contributions of distance, VC sector
experience, startup patents and VC total experience. However, combining the contributions of all
observables in the production function, particularly sector experience and distance, suggests that the
role of unobserved complementarities is roughly the same as the role of all observables.

Reporting the standard deviation of the unobserved complementarities has some analogs to report-
ing the standard deviation of error terms in other empirical literatures. For example, the standard
deviation of wage regression residuals is often thought of as representing the dispersion in unob-
served worker ability. The standard deviation of production function residuals is typically called the
dispersion in total factor productivity. There are thousands of papers on understanding the often un-
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measured factors that affect worker ability and firm total factor productivity. Likewise, our estimates
of large standard deviations of unobserved complementarities in venture capital suggest that there is
good motivation for additional academic research on the factors making venture capital investments
more productive.

9 Conclusion

Matching models that have been structurally estimated to date have not allowed rich distributions
of unobservables. It has been an open question whether data on who matches with whom as well
as match or agent characteristics are enough to identify such distributions of unobservables. In this
paper, we explore several sets of conditions that lead to identification.

Using data on only matched firms, one can identify distributions of what we call unobserved
complementarities but not the underlying primitive distribution of match-specific (or agent-specific)
unobservables. The distribution of complementarities is enough to compute assignment production
levels and therefore counterfactual assignment probabilities. In extensions, we can include other
covariates X and identify distributions of unobservable complementarities conditional on X. We show
that it is possible to identify heterogeneous-within-a-market coefficients on the large support match
characteristics. The results extend naturally to two-sided, many-to-many matching.

If the data contain unmatched firms, the individual rationality decision to not be unmatched
helps identify the distribution of primitively specified unobserved match characteristics, not just the
distribution of unobserved complementarities. We extend this result to the fairly general case of
matching with trades, as in Hatfield et al. (2015).

Our empirical work studies biotech and medical venture capital. We estimate the degree to which
venture capitalists change the production of matches. Among many other empirical results, we find
that the standard deviation of unobserved complementarities is roughly of the same order of magnitude
as the contribution to production from the observables match and agent characteristics.

A Proofs

A.1 Lemma 1

Fix a realization E∗ of the primitive unobservable, E. Using the elements of E∗ and the large support
on Z, set z?u,d = −e?u,d. Then s (A;E?, Z?) =

∑
〈u,d〉∈A

(
e?u,d + z?u,d

)
= 0 for all assignments A.

The definition of the joint CDF H
(
S̃
)
at some vector of evaluation S̃? formed from E? is

H
(
S̃?
)

= PrE (s̃ (A;E) ≤ s̃ (A;E?) ,∀A 6= A1) .
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Here, each element of the vector S̃? is s̃ (A;E?) for some A 6= A1. Identification of H follows from

H
(
S̃?
)

= PrE (s̃ (A;E) ≤ s̃ (A;E?) ,∀A 6= A1)

= PrE (s (A;E,Z?)− s (A1;E,Z?) ≤ s (A;E?, Z?)− s (A1;E?, Z?) , ∀A 6= A1)

= PrE (s (A;E,Z?)− s (A1;E,Z?) ≤ 0, ∀A 6= A1)

= PrE (s (A;E,Z?) ≤ s (A1;E,Z?) , ∀A 6= A1)

= Pr (A1 | Z?) .

Here the first line is the definition of the joint CDF, the second line adds the observed production of
assignments A and A1 to both sides of the inequality, the third line uses s (A;E?, Z?) = 0∀A, the
fourth line moves s (A1, E, Z

?) to the right side of the inequality for each A, and the fifth lines uses
the fact that assignment A1 is pairwise stable whenever A1 has a higher total production than all
other assignments A.

A.2 Lemma 2

A.2.1 First part of Lemma 2

For the first part of the lemma, we need to show that every element in C is a linear combination
of elements in B. Note that any unobserved complementarity of the form c1,d1,u,d2 is equal to the
difference of two elements of B:

c1,d1,u,d2 = e1,d1 + eu,d2 − (e1,d2 + eu,d1)

= e1,1 + eu,d2 − (e1,d2 + eu,1)− (e1,1 + eu,d1 − (e1,d1 + eu,1))

= bu,d2 − bu,d1 .

Next, we represent an arbitrary unobserved complementarity cu1,d1,u2,d2 in terms of unobserved com-
plementarities of the form c1,d1,u,d2 .

cu1,d1,u2,d2 = eu1,d1 + eu2,d2 − (eu1,d2 + eu2,d1)

= e1,d1 + eu2,d2 − (e1,d2 + eu2,d1)− (e1,d1 + eu1,d2 − (e1,d2 + eu1,d1))

= c1,d1,u2,d2 − c1,d1,u1,d2 .

Because we have shown that any unobserved complementarity of the form c1,d1,u,d2 is a difference of
two elements in B, cu1,d1,u2,d2 can be written as the sums and differences of elements in B.
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A.2.2 Second Part of Lemma 2

For the second part of the lemma, we are given a F (B) and need to find a G (E) such that G generates
F by the change of variables given by the definition of the unobserved complementarities in B, (8).
Note that every element bu2,d2 of B contains a unique element eu2,d2 of E. Place a distribution G on
E’s such that e1,d = eu,1 = 0 ∀u, d and the other elements of each E are such that eu,d = bu,d for
some B in the support of F (B). If each E of G (E) has the same frequency as the paired B in F (B),
the distribution G (E) generates F (B).

A.2.3 Third Part of Lemma 2

Let πu be permutation of upstream firm indices and πd a permutation of downstream firm indices.
Define the random matrix E to be exchangeable in agent indices if the distribution of

Eπu,πd
=


eπu(1),πd(1) · · · eπu(1),πd(N)

...
. . .

...
eπu(N),πd(1) · · · eπu(N),πd(N)


is the same as E for all πu and πd. Similarly, B is exchangeable in agent indices if

Bπu,πd
=


bπu(2),πd(2) · · · bπu(2),πd(N)

...
. . .

...
bπu(N),πd(2) · · · bπu(N),πd(N)


has the same distribution as B for all πu and πd.

We wish to prove that B is exchangeable in agent indices if E is exchangeable in agent indices. B
is formed from E by a linear transformation D, representing the formula (8) for each element of B.
Dean and Verducci (1990, Condition 2, Theorem 4) provide a sufficient (and necessary) condition for
a linear transformation to preserve exchangeability in all elements of a random vector. If we vectorize
the matrices B and E, the argument in the first paragraph of the proof of Theorem 4 of Dean and
Verducci can be reproduced for our definition of exchangeability in agent indices. We skip this step
of reproducing one direction of the proof of Theorem 4 of Dean and Verducci for our different notion
of exchangeability in agent indices for conciseness.

The sufficiency condition from Dean and Verducci that we need to verify is that for any permutation
in agent indices of B, there exists a permutation of agent indices in E that gives Bπu,πd

through the
linear transformation D. This condition is satisfied for B and E. Given permutations of agent indices
πu and πd themselves giving Bπu,πd

, the same permutations of agent indices give Eπu,πd
. It is clear

that Bπu,πd
is related to Eπu,πd

though the linear transformation D by inspection of (8).
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A.3 Theorem 1

A.3.1 First Part of Theorem 1

Using the definition of r̃ (A;B) gives

r̃ (A;B) =
∑
〈u,d〉∈A

bu,d −
∑

〈u,d〉∈A1

bu,d

=
∑
〈u,d〉∈A

(e1,1 + eu,d − (e1,d + eu,1))−
∑

〈u,d〉∈A1

(e1,1 + eu,d − (e1,d + eu,1))

=
∑
〈u,d〉∈A

eu,d −
∑

〈u,d〉∈A1

eu,d −
∑
〈u,d〉∈A

(e1,d + eu,1) +
∑

〈u,d〉∈A1

(e1,d + eu,1)

=
∑
〈u,d〉∈A

eu,d −
∑

〈u,d〉∈A1

eu,d

= s̃ (A;E) ,

where the fourth inequality uses the fact that each firm is matched the same number of times (in
one-to-one matching, exactly once) in both the assignments A and A1 and the last inequality is just
the definition of s̃ (A;E) in (2).

A.3.2 Second Part of Theorem 1

If B1 = B2, then r̃ (A;B1) = r̃ (A;B2) simply because (10) is a definition of a function of B. For
the other direction, assume r̃ (A;B1) = r̃ (A;B2) for all A. Focus on a particular scalar unobserved
complementarity bu,d in B. We will show that bu,d can be written as s̃ (A2, E)− s̃ (A3, E) for particular
assignments A2 and A3. As the first part of the theorem is that s̃ (A;E) = r̃ (A;B) for any A and
where B is formed from E, this implies that bu,d is the same in B1 and B2. Because bu,d was arbitrary,
B1 = B2.

Let A2 be an assignment that contains the matches 〈u, d〉 and 〈1, 1〉. Let A3 be the same assignment
as A2 except that A3 includes the matches 〈1, d〉 and 〈u, 1〉 and does not include 〈u, d〉 and 〈1, 1〉.
Then

s̃ (A2, E)− s̃ (A3, E) = e1,1 + eu,d − (eu,1 + e1,d) = bu,d.

By the above argument and because the match 〈u, d〉 was arbitrary, B1 = B2.

A.3.3 Third Part of Theorem 1

H
(
S̃
)
is identified from Lemma 1. The first part of Theorem 1 shows that the change of variables

from S̃ to the vector of all r̃ is one-to-one. The second part of Theorem 1 shows that the change
of variables from the vector of all r̃ to the matrix of unobserved complementarities B is one-to-one.
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Therefore, F (B) is identified.

A.4 Proof of Theorem 2

If Γ is identified, then following a slightly modified version of the proof of Lemma 1 and the same
argument as the proof of Theorem 1.3 demonstrate that F is also identified. So consider identifying
Γ. Recall that the scale normalization is that γ1,1 = ±1. We can easily identify the sign of γ1,1.
Consider some assignment A that includes match 〈1, 1〉. Then we can compare Z1 and Z2 that differ
only in the value of z1,1: z1

1,1 > z2
1,1. If Pr (A | Z1) > Pr (A | Z2), we conclude that γ1,1 = +1 and if

Pr (A | Z1) < Pr (A | Z2) we conclude that γ1,1 = −1. The main text rules out the case where any
γu,d = 0. In what follows, we focus on the case where the sign of every γu,d is identified and, in
particular, γ1,1 = +1. The case of γ1,1 = −1 is symmetric.

We now show how to identify the arbitrary parameter γũ,d̃. Consider assignmentsA1 =
{
〈1, 1〉 ,

〈
ũ, d̃
〉
, . . .

}
and A2 =

{〈
1, d̃
〉
, 〈ũ, 1〉 , . . .

}
that are identical except for the explicitly listed matches. In a proof

shortcut borrowing an idea from identification at infinity, let the matches not in A1 ∪ A2 correspond
to zu,d’s where γu,dzu,d = −∞, so we consider only Z’s where the total production of any assignment
other than A1 and A2 is −∞ and hence Pr

(
A1 | Z

)
+ Pr

(
A2 | Z

)
= 1. Set z1,d̃ = 0 and zũ,1 = 0.

Then A1 occurs whenever z1,1 + e1,1 +γũ,d̃zũ,d̃+ eũ,d̃ ≥ e1,d̃+ eũ,1, or by (8), z1,1 +γũ,d̃zũ,d̃+ bũ,d̃ ≥ 0.
This decision rule is equivalent to a decision rule in a single agent binary choice model. As bũ,d̃ is
fully independent from z1,1 and zũ,d̃, we can apply the results on binary choice from Manski (1988)
under full independence and identify γũ,d̃.

A.5 Proof of Theorem 3

Condition on X. Let A0 denote the assignment where no agents are matched, then s̃ (A0;E) = 0

for all E. Let E? be an arbitrary realization of the matrix of match-specific unobservables. Let
Z? =

(
z?u,d

)
u,d∈N

be such that z?u,d = −e?u,d. Then s (A;Z?, E?) = 0 for all A and S (A0;Z?, E) = 0

for any E. Thus for all A and all E ≤ E? elementwise, S (A;Z,E) ≤ 0 = S (A0;Z?, E). Further, if
any element of E is greater than the corresponding element of E?, assignment A0 will not maximize
s (A,Z?, E) and so A0 will not be pairwise stable. ThereforeG (E?) = Pr (E ≤ E∗ elementwise | E∗) =

Pr (A0 | Z?).

A.6 Proof of Corollary 2

Condition all arguments on X.
We first argue that the equivalent of Lemma 1 holds. Fix a realization

(
(e?u)u∈N , (e

?
d)d∈N

)
of

the agent-specific unobservables. Using the elements of
(
(e?u)u∈N , (e

?
d)d∈N

)
and the large support on(

(zu)u∈N , (zd)d∈N
)
, set z?u = −e?u and z?d = e?d, the latter without a negative sign as the multiplication
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of two negatives is positive. Then s (A;E?, Z?) =
∑
〈u,d〉∈A (e?u · e?d + z?u · z?d) = 0 for all assignments

A. The rest of the proof is then identical to the corresponding portion of the proof of Lemma 1, for
the match-specific case.

The first two parts of Theorem 1 do not refer to Z at all and do not impose any restrictions on
the E matrix. So they automatically apply to the less general case where eu,d = eu · ed. The main
identification result, the third part of Theorem 1, then follows for the agent-specific case from the
slight modification to the proof of Lemma 1 above and the first two parts of Theorem 1.

A.7 Proof of Theorem 4

Condition on X. Let A0 denote the assignment (of trades) where no trades are made, then the sum
of unobservables for this assignment is 0 for all E and Z. Let E? be an arbitrary realization of E, the
vector of trade-specific unobservables. Let Z? be such that z?ω = −e?ω for all ω ∈ Ω. Define

s (A;E,Z) =
∑
ω∈A

(eω + zω)

to be the total production from an assignment. Then s (A;Z?, E?) = 0 for all A and S (A0;Z?, E) = 0

for any E. Therefore for all A and all E ≤ E? elementwise, S (A;Z,E) ≤ 0 = S (A0;Z?, E). Therefore,
G (E?) = Pr (E ≤ E∗ elementwise | E∗) = Pr (A0 | Z?).

A.8 Proof of Theorem 5

Condition on X. Let A0 denote the assignment (of trades) where no trades are made, then the sum of
unobservables for this assignment is 0 for all E and Z. Let E? be an arbitrary realization of the array of
match-specific unobservables. Let Z? =

(
z?i,ψi

)
i∈N,ψi⊆Ωi

be such that z?i,ψi
= −e?i,ψi

∀ i ∈ N,ψi ⊆ Ωi.

Define
s (A,E,Z) =

∑
i∈N

(
ei,ψA

i
+ zi,ψA

i

)
,

where ψAi are the trades of i in A, to be the total profit or production from an assignment. Then
s (A;Z?, E?) = 0 for all A and S (A0;Z?, E) = 0 for any E. Therefore for all A and all E ≤ E?

elementwise, S (A;Z,E) ≤ 0 = S (A0;Z?, E). Therefore assignment A0 will occur whenever E ≤ E?

elementwise. Can assignment A0 occur for E not less than or equal (elementwise) to E?? For such
an E, there is at least one (i, ψi) such that ei,ψi > e?i,ψ. In this case, the valuation u (i,Ψi) of i for
ψi at Z?, ei,ψi + z?i,ψ = ei,ψi − e?i,ψi

is positive. However, it could still be that at this E and Z? a
vector of prices for trades cannot be formed so that an assignment of trades other than A0 is pairwise
stable. So A0 can occur at realizations of unobservables E not less than or equal (elementwise) to E?.
Therefore, G (E?) = Pr (E ≤ E∗ elementwise | E∗) ≤ Pr (A0 | Z?). Define Ḡ (E | X) = Pr (A0 | Z?).
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B Inputs to Moments

We describe the functions g that determine the empirical moments in (19).
The market m subscript is omitted to reduce notation; firm characteristics, numbers of upstream

and downstream firms and matching outcomes are all market specific. Let the upstream firm charac-
teristics be xu = (xu (1) , . . . , xu (K)) and downstream xd = (xd (1) , . . . , xd (K)). K is the number
of firm specific characteristics for any firm. In principle K could vary for upstream and downstream
firms although it does not in our venture capital application. Let the match specific characteristics
be xu,d =

(
xu,d (1) , . . . , xu,d

(
Ku,d

))
, where Ku,d is the number of match specific characteristics. Let

an assignment A induce a function of downstream firm indices: A (d) = u if u is matched with d. The
function is well defined because our venture capital application is to many-to-one matching and we
do not have data on unmatched firms.

1. We use the following functions g to construct moments if firm specific characteristics are included
in the match production function.

(a) For firm characteristic pair k, consider the vector

L1 (k) =
(
xu=A(1)xd=1, . . . , xu=A(ND)xd=ND

)
.

The pth quantile of L1 (k) is q (L (k) , p), where p is a number between 0 and 1. The sample
mean and variance of L1 (k) are µ1 (k) and Var1 (k). Define the functions

g1
k,p =

q
(
L1 (k) , p

)
1 + max (|L1 (k)|)

, g2
k,p =

q
((
L1 (k)− µ1 (k)

)2
, p
)

1 + Var1 (k)
.

(b) Consider the vector

L2 (k1, k2) =

xu=A(1) (k1)xd=1 (k1)
∑

u6=A(1)

xu (k2)xd=1 (k2) ,

. . . , xu=A(Nd) (k1)xd=Nd (k1)
∑

u6=A(Nd)

xu (k2)xd=Nd (k2)

 .

Let the corresponding sample mean and variance be µ2 (k1, k2) and Var2 (k1, k2). Define
the functions

g3
k1,k2,p =

q
(
L2 (k1, k2) , p

)
1 + max (|L2 (k1, k2)|)

, g4
k1,k2,p =

q
((
L2 (k1, k2)− µ2 (k1, k2)

)2
, p
)

1 + Var2 (k1, k2)
.
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(c) Let the sample mean of
(∑

u6=A(1) xu (k2)xd=1 (k2) , . . . ,
∑
u 6=A(ND) xu (k2)xd=ND

(k2)
)
be

µ3 (k2). Define the moment

g5
k1,k2 =

µ2 (k1, k2)− µ1 (k1)µ3 (k2)

1 + V ar1 (k1)
.

(d) We next define functions of market-specific regression coefficients. Note that the assignment
A can also be interpreted as an Nu by Nd binary matrix. Reshape the matrix A into a
column vector Ac while preserving the columnwise ordering (like the MATLAB reshape
command). Also construct the following matrices

Xu (k) =



Nd︷ ︸︸ ︷
xu=1 (k) , . . . , xu=1 (k)

...
...

xu=NU
(k) , . . . , xu=NU

(k)


, Xd (k) =

Nu


xd=1 (k) , . . . , xd=ND

(k)
...

...
xd=1 (k) , . . . , xd=ND

(k)

 ,

Xu·d (k) =


xu=1 (k)xd=1 (k) , . . . , xu=1 (k)xd=ND

(k)
...

...
xu=NU

(k)xd=1 (k) , . . . , xu=NU
(k)xd=ND

(k)

 .

Next similarly reshape the matrices to the column vectors Xu,c (k) , Xd,c (k) , Xu·d,c (k).
Define

Xc =
[
1, (Xu,c (1) , . . . , Xu,c (K)) ,

(
Xd,c (1) , . . . , Xd,c (K)

)
,
(
Xu·d,c (1) , . . . , Xu·d,c (K)

)]
.

We use the regression coefficients

g6 = (transpose (Xc)Xc)
−1 transpose (Xc)Ac

as our last set of functions involving the firm specific characteristics.

2. We use the following functions to construct moments if match specific characteristics are avail-
able.

(a) Previously we defined the functions g1 through g5; in those definitions agent character-
istics always enter as the product xu · xd. Replacing products xu · xd with true match
characteristics xu,d, we can define g7 through g11 like we did for g1 through g5.
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(b) We also use the additional set of functions

g12
k1,k2,p =

q
(∣∣L2 (k1, k2)− µ1 (k1)µ3 (k2)

∣∣ , p)
1 + Var1 (k1)

,

where the means and variances are analogous to those in the section above, replacing xu ·xd
with xu,d.

(c) To define an analog to g6, we use the following “regressors”. Define the matrices Xu,d (k)

with u, d elements xu,d (k), X̃u (k), where u, d elements
∑
u′ 6=u xu′,d (k), and X̃d (k) with

u, d elements
∑
d′ 6=d xu,d′ (k). Reshape the matrices into column vectors, and define

X̃c =
[
1,
(
Xu,d,c (1) , . . . , Xu,d,c (S)

)
,
(
X̃u,c (1) , . . . , X̃u,c

(
Ku,d

))
,
(
X̃d,c (1) , . . . , X̃c

D

(
Ku,d

))]
.

The functions corresponding with g6 are defined as

g13 =
(
transpose

(
X̃c
)
X̃c
)−1

transpose
(
X̃c
)
Ac.

3. When both firm and match specific characteristics are present, we interact the firm and match
characteristics.

Lu (k) =
(
xu=A(1) (k) , . . . , xu=A(Nd) (k)

)
Ld (k) = (xd=1 (k) , . . . , xd=Nd

(k))

Lu,d (k) =
(
xu=A(1),d=1 (k) , . . . , xu=A(Nd),d=Nd

(k)
)
,

and with corresponding means and variances µu (k) , µd (k) , µu,d (k) and Varu (k) ,Vard (k) ,Varu,d (k).
Define the functions

g14
k1,k2,p =

q
(
Lu (k1) ∗ Lu,d (k2) , p

)
1 + max (|Lu (k1)|)

, g15
k1,k2,p =

q
((
Lu (k1) ∗ Lu,d (k2)− µu (k1)µu,d (k2)

)2
, p
)

1 + Varu (k1)

and

g16
k1,k2,p =

q
(
Ld (k1) ∗ Lu,d (k2) , p

)
1 + max (|Ld (k1)|)

, g17
k1,k2,p =

q
((
Ld (k1) ∗ Lu,d (k2)− µd (k1)µu,d (k2)

)2
, p
)

1 + Vard (k1)
,

where the ∗ operator for two vectors represents element-wise multiplication. Construct the
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following matrices:

˜̃Xc =
[
1, (Xu,c (1) , . . . , Xu,c (K)) ,

(
Xd,c (1) , . . . , Xd,c (K)

)
,
(
Xu·d,c (1) , . . . , Xu·d,c (K)

)(
Xu,d,c (1) , . . . , Xu,d,c

(
Ku,d

))]
.

The regression-based functions are

g18 =
(
transpose

(
˜̃Xc
)

˜̃Xc
)−1

transpose
(

˜̃Xc
)
Ac.

The numbers of firm and match characteristics, K and Ku,d, and the number of quantiles p affect the
number of moments. We use quantiles (0.25, 0.5, 0.75) to construct the functions above for the biotech
sector, where market sizes range between 2 × 2 to 9 × 11. For K = 1 and Ku,d = 2, the number of
moments is 110. We use (0.1, 0.3, 0.5, 0.7, 0.9) for quantiles for the medical sector, where market sizes
are between 17× 17 to 27× 29. For K = 1 and Ku,d = 2, the number of moments is 166.
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