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In a discrete choice demand model, consumer 
i chooses product j out of the set J if ui, j .  
ui, k 5k 5 1, … , J, k Z j. A standard setup has 
a vector of D characteristics xi, j for product j, 
and utility is parametrized as ui, j 5 x9i, j b 1 ei, j, 
where b is a vector of parameters to estimate 
that re!ect the marginal utility of the product 
characteristics, and ei, j is a product-speci"c 
error term. Typically ei, j is assumed to have a 
logit or normal marginal distribution.

In industrial organization, marketing, and 
transportation economics, hundreds of papers 
use random coef"cient models to estimate both 
individual and aggregate demand. For some 
examples, see Hayden J. Boyd and Robert E. 
Mellman (1980); N. Scott Cardell and Frederick 
C. Dunbar (1980); Dean A. Follmann and Diane 
Lambert (1989); Pradeep K. Chintagunta, Dipak 
C. Jain, and Naufel J. Vilcassim  (1991); Steven 
Berry, James Levinsohn, and Ariel Pakes (1995); 
Aviv Nevo (2001); Amil Petrin (2002); and 
Kenneth E. Train (2003).

Random coef"cients generalize the model so 
that ui, j 5 x9i, j bi 1 ei, j, where the D-vector bi 
is speci"c to consumer i. Adding random coef-
"cients allows consumers to substitute (as prices 
in xi, j change) between products with similar 
nonprice observables in xi, j. Daniel McFadden 
and Train (2000) show the more general mixed 
logit can !exibly approximate choice patterns.

Random coef"cient estimators are dif"cult to 
compute. The likelihood for data on the choices 
ji of consumers i 5 1, … , N is

L(g) 5 q
N

i51
3

b

 
g J

k51 
exp 1x r   i, k b 2

exp 1x r   i, ji  

b 2
 f(b Z g) db.
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The parametric density f(b Z g) re!ects the dis-
tribution of the unobserved heterogeneity, the 
tastes bi. The goal is to estimate the parameters 
g in this density.

Estimation usually proceeds by simulation: 
maximum likelihood or the method of moments. 
The consumer i-speci"c numerical integral is of 
dimension D. The likelihood must be evaluated 
repeatedly at trial guesses of g. The nonlinear 
search over g can suffer from multiple local 
maxes, resulting in the need to try many start-
ing values. The dimension of g can be large—g 
often contains variance matrices of multivariate 
normal distributions.

Hierarchical Bayesian estimation is an alter-
native (Peter E. Rossi, Greg M. Allenby, and  
Robert McCulloch 2005). Computationally ef- 
"cient Gibbs sampling requires training in 
conjugate, family relationships that are needed 
for ef"cient random number generation. These 
conjugate families require restrictive model 
assumptions that can break down with small 
model perturbations. Gibbs sampling itself 
requires training and monitoring by the user.

This paper describes a method for estimat-
ing random coef"cient discrete choice models 
that is both !exible and simple to compute. We 
demonstrate that, with a "nite number of types, 
choice probabilities are a linear function of the 
model parameters. Because of this linearity, 
our model can be estimated using linear regres-
sion, subject to inequality constraints. We can 
approximate an arbitrary distribution of random 
coef"cients by allowing the number of types to 
be suf"ciently large. Therefore, we say our esti-
mator is nonparametric for the distribution of 
heterogeneity.

I. Review of Series Estimators

Let yj, t be the market share of product j in 
market t, xt the characteristics of all J products 
in market t, and hj, t measurement error in market 
shares. Let yj, t 5 gj 1xt 2 1 hj, t. A series estimator 
approximates an unknown function gj(xt) with 
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the approximation gj(x) L gR
r51 hr (x) ur . Here, 

5hr 1x 2 6Rr51 is a known basis of R functions cho-
sen to ease mathematical approximation, and ur 
is an approximation weight on the function r.

The key behind series estimation is that the 
unknown parameters ur enter the market share 
approximation linearly. Estimation just regresses 
yj, t on 5hr 1xt 2 6Rr51 for various markets xt. Donald 
W. K. Andrews (1991) shows that estimators of 
gj(x) for a given x and some functions of gj(x) 
are asymptotically normal.

II. Estimating Random Coef!cient Logit Models

We now show how linear regression can esti-
mate the random coef"cients logit model for 
market share data. Assume, for now, that there 
really are r known, discrete consumer types. 
Each type r is distinguished by a known, ran-
dom coef"cient vector br. Let ur be the fraction 
of consumers of type r in the population.

Let P( j Z t) be the no-measurement error mar-
ket share of product j in market t. Market shares 
are the sum of the individual choice probabili-
ties of each type in the marketplace,

P ( j Z t) 5 a
R

r51
q
g J

k51 
exp 1brxk, t 2

exp ( brxj, t) r ur.

Type r’s logit choice probabilities are weighted 
by its frequency ur. The basis functions are not 
the !exible mathematical functions from tradi-
tional series estimators, but the predictions of 
an individual choice model for consumer type r. 
No unknown parameters enter the logit choice 
probabilities. Each br represents all the utility 
parameters for type r. The unknown frequencies 
ur are structural objects, not just the approxima-
tion weights from series estimation.

The key idea is that the type frequencies ur 
enter the market shares linearly and can be esti-
mated from a linear regression of shares on logit 
choice probabilities for all types.

With actual data yj, t on market shares, we 
estimate the regression equation

yj, t 5 a
R

r51
qg J

k51 
exp 1brxk, t 2

exp ( brxj, t) r ur 1 1yj, t 2 P ( j Z t)2

to estimate the R ur ’s. Let T be the number of 
markets. There is one regression observation for 

each product and each product or T # J regres-
sion observations. The number of unknown 
parameters is the number of types, R. The term 
1yj, t 2 P ( j Z t)2 re!ects the measurement error in 
market shares.

Once the ur ’s are estimated, we can predict 
out-of-sample market shares by varying the 
product covariates xj, t in the logit choice prob-
abilities that enter the equation for P (  j Z t ).

Typically the R random coef"cient vectors br 
are unknown. We view our estimator for the ur ’s 
as a nonparametric approximation to an under-
lying, possibly continuous density of random 
coef"cients. So before running the regression, 
we "rst draw or deterministically choose R ran-
dom coef"cients br. The estimator is not par-
ticularly sensitive to the scheme used to pick the 
br’s, as the ur ’s are completely !exible parame-
ters to be estimated. We do require that we span 
the domain of the underlying true, random coef-
"cient distribution in the limit as R grows.

There is no way to impose that the types have 
some restrictive parametric distribution. Given 
that we know of no empirical applications where 
researchers would actually know the types have 
some distribution, we see no reason why a 
researcher would not want to be nonparametric 
on the weights over the R types.

R does not have to be too large. For two 
dimensions of b (D 5 2), R 5 200 works well.

One option imposes the constraints gR
r51u

r 5 
1 and ur $ 0 for r 5 1, … , R. If so, the closed-
form regression becomes an inequality con-
strained least squares (ICLS) estimator, which 
requires numerical optimization. The ICLS min-
imization problem is convex, so a standard least 
squares algorithm will "nd a global optimum. 
The minimization problem is much simpler than 
minimizing over both the R br ’s and the R ur ’s 
(James J. Heckman and Burton H. Singer 1984).

Our approach shares the intuition of span-
ning the space of economic models with the 
importance sampling estimator of Daniel A. 
Ackerberg (2001). His importance sampling 
estimator requires parametric type densities, a 
change of variables assumption, and numerical 
optimization, however.

III. Extensions

A type r could involve values for the choice-
speci"c errors of the form erj in addition to 
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 random coef"cients br. Shares are still the sum 
of decisions of R types of consumers,

yj, t L a
R

r51
1{type r buys j Z xt} ur ,

where the indicator 1 {type r buys j Z xt} says 
that consumer type r would buy product j when 
faced with the choice characteristics xt. The 
symbol “L” abstracts away from approximation 
and measurement errors.

If the data are individual, choice ji for con-
sumer i, then the regression becomes a linear 
probability model. Each consumer has J obser-
vations of the form, for observation j,

1 {j 5 ji} L a
R

r51
1E type r buys j Z {xi, k}

J
k51F ur ,

where the dependent variable is 1 if consumer 
i bought j, and 0 otherwise. If the data are indi-
vidual panels of strings of choices of the form 
ji, 1,  ji, 2,  ji, 3, … ,  ji, T , then the linear probability 
model becomes

1 {jT 5 (  ji, 1,  ji, 2,  ji, 3, … ,  ji, T )} L 

a
R

r51
1Utype r chooses string jT Z E{xt

i, k}
J
k51F

T
t51V ur .

With T periods of data, i has JT regression obser-
vations. The computational burden of linear  
regression is the number of parameters R. 
Regressions can have millions of observations.

The estimation of a forward-looking dynamic 
programming model is similar. Estimate the 
regression equation

1 {jT 5 (  ji, 1,  ji, 2,  ji, 3, … ,  ji, T )} L 

a
R

r51
LQtype r chooses string jT Z br,E{xt

i, k}
J
k51F

T
t51R ur ,

where the likelihood L for consumer i with 
preferences br requires solving a dynamic pro-
gramming problem and integrating over unob-
served actions and states, such as a consumer’s 
unobserved inventory of a storable good. The 
dynamic programming problem must be solved 
R times before the regression, but only R times. 
Under the assumptions in John Rust (1987), L 

has a closed form once the choice-speci"c value 
functions are computed.

IV. Monte Carlo

The following Monte Carlo explores the per-
formance of three estimators on three differ-
ent random coef"cient logit fake data designs. 
Each choice set has ten choices and an outside 
option with utility 0. D 5 2 and each of the two 
xj components are generated by exponentiating 
uniform draws from [0, 3].

In the "rst design, the tastes for the two char-
acteristics are independent: b1 , N 10, 1 2  and 
b2 , N 11, 2 2 . In the second design, the tastes 
keep the same marginals and add a negative 
covariance of 20.9. In the third design, the taste 
parameters are drawn from a mixture of multi-
variate normals:

 0.7 · N a c
3
0
d , c

0.1 20.1
20.1 0.5

d b

  1 0.3 · N a c
0
3
d , c

0.3 0.1
0.1 0.3

d b.

This bimodal, two-dimensional distribution of 
tastes is plotted in Figure 1.

Our estimator uses Matlab’s ICLS minimizer. 
To obtain the br’s, we drew R different coef"-
cients. Each coef"cient is independent normal, 
with the mean the estimate from the standard 
logit, and the variance 3. We set R 5 n/5.

We estimate each of the three models on our 
fake data. Figure 2 is our estimate of Figure 1 for 
a case of n 5 1,000 and R 5 200. Only 17 points 
have positive mass, and those capture the mass 
points in the underlying continuous density.

Table 1 presents the results for the root mean 
squared prediction error (RMSE) for a market 
share prediction exercise where we sample new 
x characteristics for all the products. The predic-
tion exercise tests the structural use of demand 
models. An RMSE of 0.01 corresponds to true 
market shares of 10 percent for the ten products 
and prediction errors of 1 percent in each.

In the "rst design, the RMSE is low and 
decreases with the sample size for the two con-
sistent estimators: regression and the random 
coef"cients (RC) logit. The pure logit is incon-
sistent. In the second design, only our estimator 
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is likely consistent because the RC logit assumes 
independent random coef"cients. The predic-
tion error is low and decreases with the sample 
size only for our estimator. In the third design, 
the mixed multivariate normal in Figure 1 is a 
strong test of the nonparametric ability of our 
estimator. Our estimator performs well. The 
RMSE is low and decreases with the sample 
size. Recall that we use at most R 5 200.

Overall, our estimator has much better RMSE 
than the inconsistent estimators, and the loss in 
prediction RMSE is low in the "rst experiment, 
where the RC logit is ef"cient.

V. Conclusion

Random coef"cients models have been 
thought to be computational demanding. We 

show that this is not the case, by introducing a 
linear regression estimator that is nonparamet-
ric on the density of random coef"cients. We 
discuss extensions to panel data and forward-
looking dynamic programming models.
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