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Semiparametric estimation of multinomial
discrete-choice models using a subset
of choices

Jeremy T. Fox∗

Nonlogit maximum-likelihood estimators are inconsistent when using data on a subset of
the choices available to agents. I show that the semiparametric, multinomial maximum-score
estimator is consistent when using data on a subset of choices. No information is required
for choices outside of the subset. The required conditions about the error terms are the same
conditions as for using all the choices. Estimation can proceed under additional restrictions
if agents have unobserved, random consideration sets. A solution exists for instrumenting
endogenous continuous variables. Monte Carlo experiments show the estimator performs well
using small subsets of choices.

1. Introduction

� Demand estimates are typically inconsistent when estimation uses data on a subset of the
choices available to agents in the data-generating process. This article develops an unordered,
discrete-choice estimator that is consistent with data on a subset of the available choices.

One motivation for estimation using data on a subset of choices is data availability. Chevalier
and Goolsbee (2003) and Bajari, Fox, and Ryan (2006) use data on purchases from the online
retailer Amazon. Not all products in a given retail category are offered on Amazon. One
assumption is that a consumer sees all products, both on and offline, and only buys on Amazon
if the chosen product is offered by Amazon. Using data from one retailer imposes choice-based
sampling.

Another motivation for using a subset of all choices is that the computational burden of
estimating discrete-choice models increases with the size of the choice set. Large choice sets
occur often in applications. Train, McFadden, and Ben-Akiva (1987) estimate the demand for
telephone calling plans, where each plan is a combination of several options such as a monthly
fee, usage charge, and so forth. Bayer, McMillan, and Reuben (2004) estimate a housing-demand
model where the choices are hundreds of thousands of houses in a large metropolitan area. Bajari
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and Fox (2007) study an FCC spectrum auction, where the combinatorics of gathering individual
spectrum licenses for sale into packages of multiple licenses results in a choice set with more
elements than the number of atoms in the universe.

The only consistent estimators using data on a subset of choices to compute choice
probabilities as though the true choice set is the subset with data used in estimation have been
developed by McFadden (1978) and Bierlaire, Bolduc, and McFadden (2006). These estimators
rely on known closed-form choice probabilities for a class of discrete-choice models characterized
by the error terms having a “block additive generalized extreme value” (GEV) distribution. The
block additive GEV class includes only the pure multinomial logit among well-known estimators;
the class does not include the nested logit and methods with auxiliary distributions for agent
heterogeneity, such as the random coefficients and mixed logit.

The GEV class is defined to include only choice models where the marginal distributions
for the error terms are type I extreme value with a common scale parameter. The type I extreme
value distribution is restrictive. For example, it rules out the economically interesting possibility
that the marginal distribution has multiple modes: either a consumer hates or loves a product.

Although I am motivated by the same computational and missing data on choice charac-
teristics concerns as McFadden (1978), this article uses a different set of mathematical tools
to address estimation. I work with semiparametric discrete-choice models, where the term
“semiparametric” refers to the fact that I specify a set of parameters to estimate, but I do
not specify a particular functional form for the error term. Working with semiparametric models
forces me to consider identification using properties of models that hold across a wide number
of possible distributions for the error terms, rather than imposing a known function to directly
compute choice probabilities. A semiparametric proof of consistency is also a constructive proof
of semiparametric identification, so this article clarifies the identification of multinomial choice
models using data on a subset of choices.

The pioneering work of Manski (1975) introduces semiparametric maximum-score esti-
mation for discrete-choice models. Maximum score estimators are consistent when the choice
probabilities for a given agent are rank ordered by the agent’s deterministic choice payoffs.
The property of rank ordering choice probabilities by non-stochastic payoffs can hold across a
wide number of distributions for the error terms, and is the key to semiparametric identification
and estimation using maximum-score methods. This article’s major contribution is to prove that
multinomial maximum score is consistent using data on a subset of choices. The reason is that
when one conditions on observations that selected a choice from a subset, the choice probabilities
in the subset are still rank ordered by the deterministic payoffs. All maximum score needs is rank
ordering, and so maximum score is consistent when the researcher has choice and covariate data
on a subset of the choices available to decision makers. More choices could improve the finite-
sample accuracy of the estimates, but only two choices are needed for consistency. Although I
modernize and therefore weaken the sufficient conditions on the covariates and error terms needed
for consistency of multinomial maximum-score estimators in Manski (1975), the assumptions
for consistency using a subset of choices are the same as or weaker than the conditions for using
data on all choices.

I introduce a multinomial maximum-score estimator that focuses on comparisons between
the deterministic payoffs of pairs of choices. I call the estimator pairwise maximum score. Pairwise
maximum score makes full use of the rank-order property driving identification and consistency
by considering the relative ranking of choice probabilities for, if included, all pairs of choices. By
using the restrictions of the rank-order property for comparisons of all pairs of choices, pairwise
maximum score may improve the finite-sample accuracy of the estimates.

Evaluating the pairwise maximum-score objective function requires only addition, multipli-
cation, and pairwise comparison. Further, the estimator is consistent using covariate and choice
data on a subset of choices in the true model. Compare this to estimating a semiparametric or
parametric maximum-likelihood method using covariate data on all choices in the true model.
In maximum likelihood with a large number of choices, a fitted probability that is a function of
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perhaps millions of covariates needs to be computed for each parameter value. Computing this
fitted probability can be a daunting numerical challenge that involves evaluating densities in the
far right tails. The role of maximum score as a computationally simple alternative to maximum
likelihood differs from the usual pitch for semiparametric methods, which concerns relaxing
distributional assumptions.

I present implementation advice about how to use pairwise maximum score in applications.
The availability of new global optimization routines has decreased the computational difficulty
of numerically maximizing a step function. I also introduce a two-stage instrumental variables
estimator.

I present Monte Carlo studies about the finite-sample properties of maximum score when
using data on a subset of choices. The Monte Carlo experiments compare maximum score to the
parametric logit estimator for a true model where the error terms do not have the extreme value
distribution, so that the logit is inconsistent.

This article revisits the multinomial maximum-score estimator of Manski (1975). Most
other work on maximum-score estimators, including Manski’s later work, focuses on the binary
(two) choice case. I do not believe multinomial maximum-score methods have been used in any
applications other than Briesch, Chintagunta, and Matzkin (2002) and my own (Bajari and Fox,
2007; Bajari, Fox, and Ryan, 2006). By improving and describing new properties of multinomial
maximum score, I hope to make maximum score an attractive and practical method that can be
used by applied researchers.

2. Rank ordering of choice probabilities

� The identification strategy relies only on the rank ordering of choice probabilities. This
section defines rank ordering and provides sufficient conditions on the distribution of errors in a
random utility model for rank ordering.

� Model. The model is completely standard. Consider a single-agent, unordered discrete-
choice, random-utility model. An agent makes a choice among i = 1, . . . , J products. In a
duplication of notation, J refers to both the set of choices and the number of choices. The
computational cost in estimation that this article in part addresses arises when J is large. The
number and set of choices can vary from agent to agent. Ignoring ties, the agent picks choice i if

ui > u j∀ j ∈ J , j �= i . (1)

The agent chooses i when the payoff from i exceeds the payoffs from all J − 1 alternatives. If i
satisfies (1), I refer to i as the selection.

The payoff from choosing i ∈ J is

ui = x ′
iβ + εi ,

where xi is a vector of d covariates, β is a vector of d parameters multiplying xi, and ε i represents
the sum of factors the agent feels are important but are unobserved to the econometrician. Let the
J × d matrix x be the observable covariates for all choices. Also let ε be the vector of all J ε i ’s.

In applications, xi is typically formed from the characteristics of choice i and the interactions
of the characteristics of choice i with the characteristics of the agent. Point identification requires
varying the x’s across observations on agents. Variation across agents can come from differences
in the characteristics of agents facing the same choice set, or from agents facing different choice
sets.1

1 The article assumes the standard x ′β + ε parametric functional form, although the maximum-score estimators do
not exploit any special properties of this functional form. A previous draft used results from Matzkin (1993) to replace
x ′β with a nonparametric function of x. As in Abrevaya (2000), I also replaced additive separability between x ′β and ε

with weak separability in an unknown monotone function. These weaker restrictions make the maximum-score estimator
nonparametric.
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� The rank ordering property. The estimators in this article are semiparametric, as I will
not specify a parametric functional form for F(ε | x , J ), the distribution function of the J ε i ’s.
This distinguishes semiparametric estimation from parametric estimators such as the logit and
probit, which assume a known functional form for F(ε | x , J ). Instead, semiparametric estimators
require that some particular property of the underlying choice model holds across a range of
functional forms for the distribution of the error terms.

For the case of discrete choice, the pioneering work of Manski (1975) introduces the property
that a given agent makes choices that have higher deterministic payoffs with greater frequency.
The deterministic payoffs of choices rank order the choice probabilities. Manski’s formal property
is

Assumption 1. For a given agent, and for i , j ∈ J ,

x ′
iβ > x ′

jβ (2)

if and only if

P(i | x, J , β) > P( j | x, J , β).

Here P(i | x , J , β) is the probability of i being selected. The probability is an integral over the
J unknown ε i ’s over the domain where the decision rule in (1) is satisfied. The probability P(i | x ,
J , β) is a function of the J × d matrix x and the number of choices J . Therefore, Assumption 1
is a property of integrating out the unknown ε i ’s over the correct domain, while fixing the matrix
x and therefore the payoffs x ′

iβ for all choices. As a consequence, the specific linear functional
form x ′

iβ is irrelevant to whether Assumption 1 holds.
Assumption 1 states that the contributions x ′

iβ of observable characteristics rank order the
choice probabilities for any given agent. Choices with higher deterministic payoffs are more
likely to be chosen. Assumption 1 holds for two choices at a time, regardless of the true number
of choices J . The pairwise comparison property inherent in rank ordering is why the estimators
in this article are consistent using data on a subset of choices. This will be elaborated in more
detail soon.

Assumption 1 has nothing to do with comparisons of choices across agents. For a given agent,
choice probabilities are rank ordered by deterministic payoffs, but two agents with only slightly
different deterministic payoffs can make choices with different probabilities. For example, male
agents can have errors from Laplace distributions, and female agents can have errors from normal
distributions, and this difference in error distributions will generate different choice probabilities.
Assumption 1 allows the functional form for the distribution of the errors to vary relatively flexibly
with x under the strong sufficient conditions mentioned below. The fact that the maximum-score
estimators in this article do not rely on the same shape restrictions holding across agents also
distinguishes maximum score from parametric methods such as the logit and probit.

� Rank ordering holds for a subset of choices. In this article, estimation uses data on
choices and covariates for choices in K ⊆ J . The rank ordering of choice probabilities still holds
when conditioning on a set of endogenous choices K. The preservation of the rank ordering of
Assumption 1 through conditioning is the key to understanding why maximum-score estimation
is consistent when using data on a subset of choices.

The underlying population random variables generating the data are still x 1, . . . , xJ and
ε1, . . . , ε J , as well as possibly J itself. Define PK(i | x , J , β) to be the probability of picking choice
i conditional on making a choice in the subset K. It is easy to show that choice probabilities are
still rank ordered in the subset of choices K. If

P(i | x, J , β) > P( j | x, J , β),

then by division of a positive number,
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P(i | x, J , β)∑
h∈K P(h | x, J , β)

>
P( j | x, J , β)∑

h∈K P(h | x, J , β)
,

which is just

PK (i | x, J , β) > PK ( j | x, J , β).

Therefore, conditioning on a choice set preserves the rank ordering of the choice probabilities by
the deterministic payoffs. The following result follows directly from Assumption 1.

Lemma 1. Under Assumption 1, for an agent who is known to have made a choice in a subset of
choices K, and for choices i , j ∈ K ,

x ′
iβ > x ′

jβ (3)

if and only if

PK (i | x, J , β) > PK ( j | x, J , β).

The covariates for all J choices, the J × d matrix x, enter even the conditional choice
probabilities. The choice-based data are an issue only for the econometrician. The data are
generated by agents who have information on all J choices. Maximum-score estimators do not
involve computing PK(i | x , J , β).

� Sufficient conditions for Assumption 1. Assumption 1 is satisfied by a wide class of
functional forms for F(ε | x , J ), but also is restrictive in that many other popular parametric
specifications do not satisfy Assumption 1.

Manski (1975) shows that a sufficient condition for Assumption 1 is that each ε i has support
equal to the real line and an absolutely continuous, independent, and identical distribution for all
choices. The exact distribution F(ε i | x , J ) can vary across agents with the entire J × d matrix
x, but under i.i.d. errors the marginal distribution F(ε i | x , J ) must be the same across all choices
for a given agent, and further the random variables ε i must be independent across all choices for
a given agent.

In a discussion of the empirical content of a game-theoretic concept known as quantal
response equilibrium, Goeree, Holt, and Palfrey (2004) prove that a weaker sufficient condition
for Assumption 1 is as follows.

Assumption 2. The errors ε have an absolutely continuous joint distribution with full support on
R

J . The associated joint density f (ε1, . . . , ε J | x , J ) exists and is exchangeable.

Let � J be the set of all permutations of J objects. The joint density of the errors is
exchangeable if, for all permutations ψ ∈ � J ,

f (ε1, . . . , εJ | x, J ) = f (ε�(1), . . . , ε�(J ) | x, J ).

Exchangeability is also known as interchangeability and label independence. Any collection of
i.i.d. random variables has an exchangeable joint density. The most common example of an
exchangeable density for nonindependent random variables is a multivariate normal density with
equicorrelation, or ⎡

⎢⎢⎣
ε1

...

εJ

⎤
⎥⎥⎦ ∼ MV N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

μ

...

μ

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

σ 2 ρ ρ

ρ
. . . ρ

ρ ρ σ 2

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

The correlation ρ between all choices J is the same, and the univariate variance σ 2 of each choice
is also identical. For Assumption 1 to hold, the multivariate normal parameters μ, ρ, and σ 2 can
vary randomly across agents, and can be arbitrary functions of the J × d matrix x. However, each
agent must have only the three parameters μ, σ 2, and ρ.
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Consider a heterogeneous taste ν a for quality x ′
iβ. Thus let uai = (x ′

iβ)ν a + εai , where ν a

is an agent-specific random variable. Here ν a scales the utility parameters of agent a. As the
rank-order property does not involve comparisons of choices across agents, the relative scales of
utility across agents can vary flexibly. What is important is that the conditional on x variance of
uai can be written as a weakly increasing function of x ′

iβ, in place of a function of each of the
components of xi separately.

There are economically interesting models that do not satisfy Assumption 1. With product
characteristics representing the main variation in xi across choices, parametric demand specifica-
tions often rely on random coefficients to add unobserved heterogeneity in tastes for observable
characteristics (Berry, Levinsohn, and Pakes, 1995). A random-coefficient specification for uai

for agent a is

uai = x ′
iβa + ηai = x ′

iβ + x ′
i (βa − β) + ηai = x ′

iβ + εai ,

where the random coefficient β a enters the composite error term εai = x ′
i (β a − β) + ηai ,

and the object of estimation β is interpreted as the mean random coefficient in the population.
Random coefficients generate heteroskedasticity across choices that cannot be written as a weakly
increasing function of only x ′

iβ. Random coefficients also generate correlation between choices.
The deterministic payoffs x ′

iβ may not rank order the choice probabilities under het-
eroskedasticity across choices, for a given agent. A choice with a greater variance and the
same mean payoff x ′

iβ as another choice will have more frequent draws from the right tails of
the support of the error distribution. The decision rule in (1) shows that maximal order statistics
drive discrete choices. A choice with a higher variance will have more draws from the right tail
and will be made with a higher probability. This violates Assumption 1, which says that choices
with the same mean payoffs must be made with equal probabilities.

The rank ordering of choice probabilities by deterministic payoffs in Manski’s Assumption
1 is strong for many applications such as demand estimation. Bajari, Fox, and Ryan (2006) show
that estimation can allow for agent-specific fixed effects over nests of alternatives. Fixed effects
allow the error terms to be correlated within classes of similar products, one of the motivations
behind random coefficients.

For binary choice (J = 2), Manski (1975) and a large follow-up literature, such as Manski
(1985) and Horowitz (1992), detail the properties of maximum-score estimators. In binary choice,
an agent who does not pick choice 1 must pick choice 2, so these authors choose to work with a
single composite error term ε1 − ε2 and a single covariate vector x 1 − x 2. In binary choice,

P(1 | x, 2, β) + P(2 | x, 2, β) = 1,

so choice 1 has a greater probability when its probability is greater than 1/2. Substituting the
CDF of ε1 − ε2 and applying the decision rule in (1) gives

P(1 | x, 2, β) = 1 − Fε1−ε2 (−(x1 − x2) | x, β) = 1

2
if x1 − x2 = 0

and the composite error term ε1 − ε2 has a median of 0 regardless of the value of x 1 − x 2. The
rank ordering of choice probabilities by deterministic payoffs in Assumption 1 follows from this
median independence assumption.

For binary choice, random coefficients

ua1 − ua2 = (x1 − x2)′β + (x1 − x2)′(βa − β) + ηa1 − ηa2 = (xa1 − xa2)′β + εa1 − εa2

can be tolerated, as some distributions for the random coefficients preserve median independence.
To see this for an example, let β a ∼ N (0, 
) and ηa1 − ηa2 ∼ N (0, σ 2

η
). Then

εa1 − εa2 ∼ N
(
0, σ 2

η
+ (xa1 − xa2)′
(xa1 − xa2)

)
and has median 0 conditional on x1 and x2. With two choices, random coefficients induce only
heteroskedasticity across agents in εa1 − εa2. Heteroskedasticity across agents does not affect the
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rank-order property, which involves orderings of choice probabilities across choices for a given
agent.

� Rank ordering with unobserved, random consideration sets. It may be unrealistic to
assume that a decision maker is aware of his or her payoffs for all J choices. An alternative
is that each agent is aware of a subset H of the J available choices. H is not observable to the
econometrician. The set H is often called a consideration set (Mehta, Rajiv, and Srinivasan, 2003).

Let PS(H | x , J ) be the probability that an agent is aware of the choices in H . The probability
of an agent choosing product i conditional on J (but not H) is

P(i | x, J , β) =
∑

H⊆J s.t. i∈H

P S(H | x, J )P(i | x H , H , β),

where xH is the matrix of characteristics for the products in H . I derive conditions on
PS(H | x , J ) so that the rank-order property, Assumption 1, holds for the entire choice set
J when agents have random and unobserved consideration sets. If Assumption 1 holds, then
Lemma 1 holds, and subset estimation using the typically nonrandom set K ⊆ J can proceed.
For example, β can be estimated using data on two choices, even if some consumers were not
aware of one of the two choices.

I maintain that the rank-order property holds for each decision problem H . The key additional
assumption is that decision makers are weakly more likely to be aware of a set of choices than
an otherwise identical set where a choice is swapped for a choice with a lower deterministic
payoff.

Lemma 2. Assume:

(i) For all H ⊆ J , {ε j} j∈H has an exchangeable, absolutely continuous joint distribution
with support R

|H |.
(ii) For all H ⊆ J , for any i , j ∈ H and H ⊂ J\{i, j}, P S(H ∪ {i} | x, J ) ≥

P S(H ∪ { j} | x, J ) if and only if x ′
iβ ≥ x ′

jβ.
(iii) For two sets H 1 ⊆ J and H 2 ⊆ J , where |H1| = |H2|, FH1 (ε1, . . . , εH1 ) =

FH2 (ε1, . . . , εH2 ).

Then x ′
iβ ≥ xj β if and only if P(i | x , J , β) ≥ P( j | x , J , β).

Proof . P(i | x , J , β) − P( j | x , J , β) can be decomposed into the sum of four parts or∑
H⊆J

P S(H | x, J )(P(i | x H , H , β) − P( j | x H , H , β))

=
∑

H⊆(J\{i, j})∪∅

[
P S(H | x, J ) · 0 + P S(H ∪ {i} | x, J ) · P

(
i | x H∪{i}, H ∪ {i}, β)

− P S(H ∪ { j} | x, J ) · P( j | x H∪{ j}, H ∪ { j}, β) + P S(H ∪ {i, j} | x, J )

· (P(i | x H∪{i, j}, H ∪ {i, j}, β) − P( j | x H∪{i, j}, H ∪ {i, j}, β))
]
.

For the “only if” part of the lemma, let x ′
iβ ≥ x ′

jβ. Fix H ⊆ J\{i, j}. I will show that the term
in the summation is nonnegative. As this is true for all H ⊆ J\{i, j}, the entire sum is nonnegative,
so P(i | x, J , β) ≥ P( j | x, J , β). The result of Goeree, Holt, and Palfrey (2004) shows that
an exchangeable joint density leads to the rank-order property: x ′

iβ ≥ x ′
jβ iff P(i | x H∪{i, j},

H ∪ {i, j}, β) > P( j | x H∪{i, j}, H ∪ {i, j}, β). In the summation, the first term is the case where
neither i nor j is in H , the second term is the case where i is in H but j is not, the third term is
when j is in H but i is not, and the fourth term is when both i and j are in H .

The term inside the summation can only be negative if P S(H ∪ {i} | x, J ) ·
P(i | x H∪{i}, H ∪ {i}, β) < P S(H ∪ { j} | x, J ) · P( j | x H∪{ j}, H ∪ { j}, β). P S(H ∪ {i} | x, J ) ≥
P S(H ∪ { j} | x, J ) by the conditions of the lemma. The “only if” part of the lemma will hold if I
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prove that x ′
iβ ≥ x ′

jβ implies P(i | x H∪{i}, H ∪ {i}, β) ≥ P( j | x H∪{ j}, H ∪ { j}, β). Writing out
the formula for choice probabilities gives

P(i | x H∪{i}, H ∪ {i}, β) =
∫ ∞

−∞

∫ x ′
i β+εi −x ′

H β

−∞
. . .

∫ x ′
i β+εi −x ′

1β

∞
d FH∪{i}(ε1, . . . , εH , εi ),

where WLOG the elements of H are ordered 1, . . . , H , with the convention that the i in the
upper limits is the i in H ∪ {i} rather than the ith element of 1, . . . , H . As x ′

iβ enters only the
upper limits of integrals, and the integrand is everywhere positive, then P(i | x H∪{i}, H ∪ {i}, β) is
increasing in x ′

iβ. By the condition in the lemma that F H∪{i} = F H∪{ j}, the formula for P( j | x H∪{ j},
H ∪ { j}, β) is identical to P(i | x H∪{i}, H ∪ {i}, β) with x ′

jβ replacing x ′
iβ. Therefore,

P(i | x H∪{i}, H ∪ {i}, β) ≥ P( j | x H∪{ j}, H ∪ { j}, β).
The “if” direction of the lemma assumes that P(i | x , J , β) ≥ P( j | x , J , β) and concludes

that x ′
iβ ≥ x ′

jβ. Assume not, so that x ′
jβ > x ′

iβ. Then by the above argument, P( j | x , J , β) >

P(i | x , J , β), a contradiction.

For space reasons, I do not explore the case where a researcher has observables vi that enter
the consideration set probabilities but that do not enter the payoff of a choice conditional on it
being in a consideration set. Such exclusion restrictions might allow one to identify PS(H | x ,
v, J ) from observations on P(i | x , v, J , β). Goeree (2005) uses data on media exposure to help
identify PS(H | x , v, J ).

3. Data on a subset of choices

� This section presents sufficient conditions on the sampling rule of the data for consistency
of the maximum-score estimators that I will later introduce. The econometrician has access to a
sample of data on agents who made selections in the subset K. K is also the number of observed
choices, so K ≤ J . If the econometrician knows that a particular agent was not selecting from all
elements of K, the estimators can be modified to include this information.

The econometrician has an i.i.d. sample of n observations on agents who selected a choice
from the set K. Importantly, the econometrician observes the covariate data xi for all choices
i ∈ K regardless of the selection of the agent, as long as the selection is in K to begin with.
Without a loss of generality, reindex the choices i = 1, . . . , K . Let xK be the K × d matrix of
one agent’s covariate data for choices in K. Estimation does not use data about the frequencies
of agents who make choices outside of K, or about the characteristics of choices outside of K,
or even about the number J of choices in the true model. This article does not consider the case
where individual regressors in the matrix xK are missing.

Point identification requires a special regressor with a continuous distribution. For each
choice i, factor the vector of covariates xi into (x1i , x̃i ), where x 1,i is the first element of the vector
of covariates, and x̃i is the d − 1 other covariates. For the other covariates, the assumptions are
similar to those made in parametric maximum-likelihood models, such as the logit and probit.

Assumption 3. For each pair of choices i , j ∈ K , let w i j = x 1,i − x 1, j . The following properties
are true.

(i) G K
1,i j (wi j | x̃i , x̃ j ) is absolutely continuous with density gK

1,i j (wi j | x̃i , x̃ j ).
(ii) gK

1,i j (wi j | x̃i , x̃ j ) is nonzero everywhere on R.
(iii) The parameter β 1 on the first covariate x 1,i is nonzero.
(iv) The support of the covariates xi − xj does not lie in a proper linear subspace of R

d ,
where again d = dim{xi − x j}.

The freely varying covariate w i j = x 1,i − x 1, j in Assumption 3 is a standard sufficient
condition for point (versus set) identification in semiparametric discrete-choice models (Manski,
1985). Covariates x 1,i and x 1, j that are individually always positive can fulfill the role of
w i j = x 1,i − x 1, j as long as sometimes x 1,i > x 1, j by sufficient margins, and other times
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x 1,i < x 1, j by sufficient margins. In demand estimation, price is a good covariate to play the role
of the continuously varying x 1,i , if price varies across agents in the sample. Alternatively, the
continuously varying characteristic might be a consumer characteristic such as income that is
interacted with some product characteristic.

The large support assumption on w i j = x 1,i − x 1, j can be weakened. Manski (1988) and
Horowitz (1998) show that, under additional conditions, semiparametric discrete-choice models
can be identified if the first element of the covariate vector has bounded support.

4. Pairwise maximum score

� The econometrician wants to use the covariate and choice data to estimate β, the unknown
parameters in the linear index of observable payoffs in utility. The econometrician is willing to
assume the data are generated by the random-utility model in (1), but he or she does not want to
choose a functional form for F(ε | x , J ), the distribution of the errors.

This section introduces a new objective function for multinomial maximum score. The
objective function is inspired by the functional form for binary (two) choice maximum score, in
that the pairwise maximum-score objective function compares pairs of choices at a time. It turns
out that the pairwise maximum-score objective function produces the same objective-function
value as a member of a general class of scoring rules introduced by Manski (1975). Later I
compare pairwise maximum score to the functional forms considered in Manski’s pioneering
work.

� Only two choices used in estimation. For illustration, consider an econometrician who
wants to use data on only choices i and j. In this example, K = 2. Let there be a = 1, . . . , n
observations, where every agent selects either i or j. A multinomial maximum-score estimator is
then any parameter vector (the objective function is a step function) that maximizes

Qi j
n (β) = 1

n

n∑
a=1

(1[ai] · 1[x ′
aiβ > x ′

ajβ] + 1[aj] · 1[x ′
ajβ > x ′

aiβ]). (4)

There are several things to note about this pairwise maximum-score estimator. The 1[·] functions
are indicator functions equal to 1 when the condition in brackets is true, and 0 otherwise. The
dependent variable data are of the form 1[ai], which is equal to 1 if, in the data, agent a’s selection
is i. If a does select i, 1[x ′

aiβ > x ′
ajβ] enters the objective function.

For any agent i, at most one of the two indicator functions 1[x ′
aiβ > x ′

ajβ] and 1[x ′
ajβ > x ′

aiβ]
can be 1. Therefore, the objective function increases by 1 when, for example, a selects i and a’s
deterministic payoff for i , x ′

aiβ, is greater than a’s deterministic payoff for j. The term maximum
score is appropriate because the econometrician maximizes the score of correct predictions
according to Lemma 1. Now agent a could select j because of a high εaj draw even when x ′

aiβ >

x ′
ajβ. This is expected for a handful of observations. However, asymptotically, if x ′

aiβ > x ′
ajβ,

then under Lemma 1 there will be more instances where i is selected than j.
For a given β, Qij

n(β) is the model’s fraction of correct predictions according to Lemma 1.
Therefore, Qij

n(β) is a measure of model fit and can be listed in a table of output just as one would
report R2 in a linear regression.

Note that calculating Qij
n(β) involves only addition, multiplication, and pairwise comparison.

There are no numerical integrations and complex nonlinearities to work with.

� More than two choices. It is easy to generalize the objective function in (4) to include data
on more choices. Now the econometrician uses n observations, all of whom selected a choice in
K. The pairwise maximum-score objective function using choice-based data on K choices is

QK
n (β) =

K−1∑
i=1

K∑
j=i+1

1

n

n∑
a=1

(1[ai] · 1[x ′
aiβ > x ′

ajβ] + 1[aj] · 1[x ′
ajβ > x ′

aiβ]). (5)
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The estimator is any parameter vector β̂K
n that maximizes QK

n (β). It can be seen that QK
n (β)

repeats Qij
n(β) for 1

2
K (K − 1) pairs of choices in K. Only a single pair of choices is needed for

consistency, but adding more choices makes more use of the data.
A researcher has the flexibility to pick the set K if there are data on more than two choices.

The researcher may want to balance computational speed and the finite-sample precision of the
estimates of β.

Itemizing over all 1
2
K (K − 1) possible combinations of pairs of choices in K in (5) is not

necessary for consistency. A more primitive notion is a pair of choices j and k such that j �= k. A
researcher can arbitrarily include any number of distinct pairs of choices.

The objective function is written as though K is fixed across observations. Say data on K
choices are available, but the objective function uses only a subset Ia for observation a. The
included subset I is random with probability P(I | xK). Point identification requires the support
of the exogenous data to remain the same, so P(I | xK) > 0 for all xK and I ⊆ K . Randomly
drawing Ia requires throwing away observation a with selection ya if ya �∈ Ia.

� Consistency. As a discrete choice is qualitative and cannot pin down a cardinalization of
utility, one needs to impose location and scale normalizations on the parameter space. Therefore,
make the following standard assumption.

Assumption 4. The parameter β0 generating the data is known to lie in a compact space � that
imposes location and scale normalizations.

I choose the normalization that makes the consistency proof the easiest. In particular, recall
the freely varying covariate x 1,i , the first element of the covariate vector, from the covariates
assumption. Assumption 3 states that β 1 �= 0. Without any further loss of generality, choose the
scale normalization β 1 = ±1. The entire parameter vector can be estimated by first estimating
the model for β 1 = 1, and then reestimating the model for β 1 = −1, and picking the estimates of
β to be the case with the largest objective-function value.

Pairwise maximum score is consistent under the same assumptions as the original multi-
nomial maximum-score estimator of Manski (1975). The formal statement of consistency as
n → ∞ follows.

Theorem 1. Under Assumptions 1, 3, and 4, the pairwise maximum-score estimator β̂K
n ∈ � is a

consistent estimator for β0, the true parameter in the data-generating process.

The proof of Theorem 1 is in the Appendix. The proof is written to be rather detailed because
applied users of demand estimation techniques may not be familiar with proof techniques from
the semiparametric discrete-choice literature.

If the covariates do not satisfy Assumption 3, β0 can be bounded by finding the set of β0

that satisfy Assumption 1.

� Comparison of pairwise maximum score to Manski’s multinomial maximum
score. Manski (1975) introduces a general class of scoring rules. It is easy to see that pairwise
maximum score produces the same objective-function value as the objective function

QRank
n (β) =

K∑
i=1

1

n

n∑
a=1

(
1[ai] · Rank

[
x ′

aiβ | {x ′
ajβ}K

j=1

])
,

where Rank[x ′
aiβ | {x ′

ajβ}K
j=1] is the number of other choices in K that have a deterministic payoff

x ′
ajβ less than x ′

aiβ. Rank[x ′
aiβ | {x ′

ajβ}K
j=1] is a function of the characteristics of all K choices. If

K = J , QRank
n (β) is a member of the general class of estimators in Manski (1975).

The form of the multinomial maximum score used by Manski (1975) in his Monte Carlo
study, and reported in the textbook of Amemiya (1985), is

C© RAND 2007.



1012 / THE RAND JOURNAL OF ECONOMICS

QMax
n (β) =

J∑
i=1

1

n

n∑
a=1

(1[ai] · 1[x ′
aiβ > x ′

ajβ ∀ j ∈ J , j �= i]).

The objective function QMax
n (β) increases the score of correct predictions if an observed selection

i has a greater linear index x ′
aiβ than the linear indices of all J choices other than i. Although

previous authors have not discovered this property, if J were replaced with K ≤ J in QMax
n (β),

the objective function produces a consistent estimator under the same conditions as Theorem 1.
There are three advantages of the pairwise maximum-score estimator formed by maximizing

QK
n (β) over one or both of QRank

n (β) and QMax
n (β). First, QMax

n (β) does not incorporate all the
restrictions of Assumption 1. If J or K is 100, the presence of 100 error terms means that
the choice with the highest x ′

aiβ will often not be picked. Say x ′
aiβ for the observed choice is the

50th highest deterministic payoff. QMax
n (β) would increase by 0 for observation a. Assumption 1

says that the probability of choosing i must be higher than 49 other probabilities. The pairwise
maximum-score objective function would increase the score of correct predictions by 49 when
evaluated at the true parameter value β0, and makes better use of the data from observation a.

A second, programming advantage of pairwise maximum score over QRank
n (β) is that

a researcher does not need to code a sorting algorithm to compute Rank[x ′
aiβ | {x ′

ajβ}K
j=1].

The evaluation of the pairwise maximum-score objective function requires only addition,
multiplication, and pairwise comparison.

The third advantage of pairwise maximum score over both QRank
n (β) and QMax

n (β) involves the
rate of convergence and asymptotic distribution of maximum-score estimators. For the binary-
choice maximum-score estimator, Horowitz (1992) proves that, under additional smoothness
assumptions about the data-generating process, his smoothed estimator converges at a rate close
to

√
n and is asymptotically normal with a variance-covariance matrix that can be estimated

and used for inference. Effective smoothing requires a one-dimensional function of the unknown
parameters, β. Pairwise maximum score includes only one-dimensional functions that are easy to
smooth, whereas QRank

n (β) and QMax
n (β) are multidimensional functions of β that will have slower

rates of convergence when smoothed.
Smoothing the maximum-score step function does not solve the main issue in the

computational cost of numerically maximizing the objective function: the presence of local
hills providing tempting regions for a greedy optimization routine to converge to.

5. Implementation suggestions

� Programming the objective function for a given data set. If an otherwise intractable
number of choices are observed in the data, a feasible estimator splits all choices into nests. For
example, if K is 1 million and there are n = 1000 observations on agents, then the researcher could
create 100 nests, each with 10 selections made by agents in the data and 10 unobserved choices.
Say the researcher has chosen D distinct nests of choices K 1, . . . , KD. In notation appropriate
for understanding the asymptotic properties of the estimator, the new pairwise maximum-score
objective function is

QK ,D
n (β) =

D∑
d=1

∑
i∈Kd

∑
j∈Kd , j>i

1

n

n∑
a=1

{1[ai] · 1[x ′
aiβ > x ′

ajβ] + 1[aj] · 1[x ′
ajβ > x ′

aiβ]}.

Bajari, Fox, and Ryan (2006) show that this objective function preserves consistency under agent
and nest fixed effects. If the econometrician only compares two choices in the same nest, an
unobserved nest and agent-specific fixed effect drops out. If nests are included for computational
reasons, allowing for agent and nest fixed effects comes for free.

For any given data set, many of the dependent variable indicator functions of the form 1[ai]
will be zero. Define K (a) to be a nest that includes agent a’s observed selection, ya. For a, the
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estimator will only relate the deterministic linear index of ya to the linear indices of other options
in K (a). For a given data set, the objective function with nests reduces to

QK ,D
n (β) = 1

n

n∑
a=1

∑
j∈K(a), j �=ya

1[x ′
aya

β > x ′
ajβ].

This is an easy objective function to program. Evaluating the objective function requires only
multiplication, addition, and pairwise comparison.

� Numerical maximization of the objective function. The maximum-score objective func-
tion is a step function, so there will always be multiple global maxima. The idea underlying
consistency is that with a large number of observations, there is likely to be only one connected
range of maxima. In the limit, this connected range converges to a point, if the assumptions for
point identification and consistency specified in Theorem 1 are satisfied.

A numerical search procedure must be employed in order to compute one global maximum.
As every point on a step function is a local maximum, local search methods are not useful. A
researcher should use a global search routine. In terms of speed conditional on finding a global
maximum at all, I have found good results using the method of differential evolution developed
by Storn and Price (1997). Storn and Price discuss how differential evolution beats many other
optimization routines, include simulated annealing, on a suite of test problems commonly used as
benchmarks in the numerical optimization literature. The objective functions in the Monte Carlo
experiments in Section 6 are almost always properly maximized by the differential evolution
routine in Mathematica, using its default settings. The differential evolution procedure is an
option of the NMinimize command.

� Inference. Neither estimating the components of an analytically derived asymptotic
distribution nor using the bootstrap are currently useful methods for inference for maximum-
score estimators. Kim and Pollard (1990) show that the binary-choice maximum-score estimator
converges at the rate of 3

√
n, and Abrevaya and Huang (2005) show that the standard bootstrap is

not consistent in the case of the class of 3
√

n-consistent estimators studied by Kim and Pollard.
Delgado, Rodrı́guez-Poo, and Wolf (2001) show that an alternative resampling procedure,

subsampling, consistently estimates the asymptotic distribution of test statistics for the class of
3
√

n-consistent estimators studied by Kim and Pollard. Subsampling is described in the book by
Politis, Romano, and Wolf (1999). I have used subsampling in my own empirical applications
(Bajari and Fox, 2007).

� Price endogeneity and instruments. Say a researcher includes an endogenous covariate,
say price, and has a vector of instruments z for price. Normalize the coefficient on price to be −1.
The first stage of a two-stage instrumental variables estimator runs OLS to produce the estimate
γ̂n for the parameters of the pricing prediction equation. Then z′

i γ̂n is substituted for price in
the discrete-choice objective function, and the maximum-score estimator is computed normally.
The two-stage IV pairwise maximum-score estimator is any parameter vector that maximizes the
objective function

QK ,IV
n (β) =

K−1∑
i=1

K∑
j=i+1

1

n

n∑
a=1

{1[ai] · 1[x ′
aiβ − z′

ai γ̂n > x ′
ajβ − z′

aj γ̂n]

+ 1[aj] · 1[x ′
ajβ − z′

aj γ̂n > x ′
aiβ − z′

ai γ̂n]}.
This estimator will be consistent if the true residual from the price regression is i.i.d. across
observations. In this case, the sum of the (itself assumed i.i.d.) random utility error and the
pricing residual is i.i.d., giving the rank-order property needed for identification.
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FIGURE 1

MIXED NORMAL DENSITY FUNCTION USED IN MONTE CARLO EXPERIMENTS
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The density is a mixed normal: 0.369 · N (−1.0, 0.184) + (1 − 0.369) · N (1.5, 0.193). These
parameters are chosen to create an asymmetric, bimodal distribution with the same mean and
variance as the extreme value distribution assumed by the logit.

6. Monte Carlo experiments

� This section presents Monte Carlo experiments to study the finite-sample properties of the
subset maximum-score estimator. For an observation a, data are generated from the random-utility
model

uai = x1,ai + β2x2,ai + εai , for i = 1, . . . , J ,

where εai is i.i.d. across observations and choices. The covariates x 1,ai and x 2,ai are i.i.d. N (0, 2).
The true parameter value is always β 2 = 1. As choice behavior alone cannot identify
the cardinalization of utility functions, discrete-choice estimators require location and scale
normalizations. I impose the normalizations that the mean of εai is equal to Euler’s constant
(γ ≈ 0.577), the variance of εai is equal to the logit variance (π 2/6 ≈ 1.65), and the coefficient
on x 1,ai is 1. The first two normalizations correspond to those made in the logit maximum-
likelihood estimator. The coefficient normalization is more common in semiparametric estimators.
A semiparametric estimator can estimate the sign on x 1,ai (whether the coefficient is 1 or −1),
although the estimate of the sign would converge at such a fast rate that further analysis of its
finite-sample properties is unhelpful.

The distribution of the error term εai is mixed normal, which in this case is a bimodal,
asymmetric distribution. Figure 1 displays a plot of the probability density function, and gives
details of the exact parameters chosen. Again, the parameters are chosen to match the mean
and variance of the extreme value distribution in the logit.2 The mixed normal density is chosen
specifically so the logit estimator will be misspecified, to highlight the greater robustness of
semiparametric estimation.

2 An alternative normalization is to make the median (not the mean) of εai equal to its value for the logit (−log log 2 ≈
0.367) while preserving the variance of π 2/6. Under one such mixed normal satisfying these alternative normalizations,
the finite-sample bias of the logit maximum-likelihood estimator is 0.01 farther from 0.0 than the logit ML bias reported
in the first row (N = 100, J = 10) of Table 1.
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TABLE 1 Monte Carlo Calculations Full-Choice Sets and Estimation Subsets

Logit Maximum Pairwise Maximum Logit Subset Pairwise
# of True

Likelihood Score (K = J )
# of Est.

Sampling Maximum Score
Choices Choices

N (J ) Bias MSE Time Bias MSE Time (K) Bias MSE Time Bias MSE Time

100 10 .072 .014 .035 .006 .019 1.09 5 .089 .021 .018 .008 .039 .480
100 .178 .036 .314 - - - 10 .178 .046 .039 .025 .046 1.16

1000 .257 .067 3.25 - - - 10 .198 .072 .043 .084 .142 1.27
500 10 .071 .007 .207 .004 .006 6.85 5 .082 .009 .121 .009 .010 2.93

100 .178 .033 1.72 - - - 10 .169 .031 .219 .008 .013 6.76
1000 .253 .065 19.3 - - - 10 .151 .029 .233 .015 .030 7.91

The true model is i.i.d. multinomial mixed normal. One thousand replications are performed for all experiments.
The reported time is the mean number of seconds to perform one replication for that estimator. For each replication,
the four estimators use the same fake data. The logit estimates are computed using a gradient-based maximization
routine. The maximum-score estimates are computed using a genetic algorithm because the objective function is a
step function. Computations are done in Mathematica 5 for (32-bit) Windows on a machine with a 2.2 GHz Athlon 64 CPU.

Table 1 reports the finite-sample mean biases, mean-squared errors (MSE), and mean
execution times from the Monte Carlo experiments. In all experiments, only the parameter β 2 is
estimated. The bias of an estimator β̂2 is E[β̂2 − β2], and the mean-squared error is E[(β̂2 − β2)2].
The first estimator in Table 1 is the logit maximum-likelihood estimator. The second estimator is
the maximum-score estimator when all choices are included.

The table also includes the two estimators that are computationally feasible when the true
number of choices is large. The logit sampling estimator was introduced by McFadden (1978).
It exploits the independence from irrelevant alternatives property of the logit to allow estimation
using agent-specific random choice sets. The logit sampling estimator is compared to the pairwise
maximum-score estimator, where observations are grouped into smaller nests.

For the maximum-score estimator, I use all observations by creating distinct estimation
nests, as in Section 5. The randomly sampled choice set (logit) or nest (maximum score) sizes
(Kd) are equal to 5 or 10, as marked in Table 1. In the sampling logit, the choice set for an agent
is its observed choice plus 4 or 9 other choices, randomly sampled without replacement from
all possible choices.3 The other choices are included with uniform probabilities. In the subset
maximum score with nests, nests are created from the total set of observed (in the data) choices.
Two (Kd = 5) or five (Kd = 10) of the choices in each nest are sampled without replacement
from choices seen in the data. The total number of nests is the number of subsets formed by this
partition. Some observed selections are unassigned if the number of unique choices in the data is
not evenly partitionable into nests. I assign the remainder of the observed selections to all nests.
The remaining choices (to make 5 or 10) in a nest are randomly sampled without replacement
from all choices not already assigned to that nest. Estimation proceeds by assigning each agent
the nest that includes the agent’s observed selection. To break ties, an agent with a selection in
more than one nest is assigned the largest arbitrary nest index.

When examining the execution times, it is clear that both the logit sampling estimator and
the subset maximum-score estimator require less computer time for estimation than methods that
require itemization of the entire choice set.4 In fact, performing 1000 replications of pairwise

3 The distinction between random and deterministic choice sets should not affect the distribution of included
covariates in this Monte Carlo study, and thus should not affect the comparison of the estimators.

4 The Monte Carlo experiments are not designed to compare the execution time of the logit and maximum score. In
practice, the logit requires the estimation of one more parameter than the maximum-score estimator, as semiparametric
estimators make location and scale normalizations on the parameter space, rather than the distribution of the unobservables.
As optimization routines suffer from a curse of dimensionality in the number of parameters, it is possible that the logit
might take longer than the maximum score. The maximum-score estimator should be computed twice, once for the
first parameter β 1 = 1, and again for β 1 = −1. The set of estimates corresponding to the minimum of the two sets of
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maximum score with the full choice set is burdensome enough that I do not investigate its small-
sample properties when the number of choices is greater than 10. For all estimators, and for a
given number of observations, execution time is roughly equal to a constant times the number
of choices considered in estimation for each observation. The logit without choice sampling
estimator takes 19 seconds with 500 observations and 1000 choices. By extrapolation, a model
where there are one million choices and only one parameter might take five hours. Optimization
routines suffer from a curse of dimensionality in the number of parameters, so a multivariate logit
model with one million choices and five covariates might take days to estimate.

Table 1 shows that the maximum-score estimators have lower levels of finite-sample bias than
the logit estimators. For example, in the first row (N = 100, J = 100), the logit sampling estimator
has a bias of 0.09, while the bias of the semiparametric estimator is an order of magnitude lower,
at 0.01. The most likely explanation is that the semiparametric estimator is consistent under
the mixed normal distribution, whereas the logit is inconsistent. The mean-squared errors of
the logit are sometimes smaller (0.021 versus 0.039 in the first row), probably because the
logit assumes additional structure that makes continuous choice-probability predictions, rather
than just discrete yes-or-no predictions about choices in the maximum-score case. However, any
additional precision of the logit does not contribute much to accuracy, as the logit is precisely
estimating a biased coefficient.

7. Summary

� A researcher may have data on a subset of choices, or a researcher may only wish to use data
on a few choices because itemizing all choices is computationally burdensome. An important
difficulty in estimating parametric multinomial choice models is that maximum likelihood is
typically inconsistent when estimation uses covariate data on a subset of choices. An exception is
that pseudo-maximum-likelihood estimators using the class of block-additive GEV errors studied
by McFadden (1978) and Bierlaire, Bolduc, and McFadden (2006) are consistent using data on a
subset of choices.

This article shows that any multinomial maximum-score estimator can consistently estimate
the parameters in a linear index over observable characteristics using data on a subset of
choices. A maximum-score estimator is semiparametric and does not require assuming that
the econometrician knows the exact shape of the error distribution. There has been almost no
work on multinomial maximum score since the original paper by Manski (1975). I modernize the
conditions on error terms and covariates needed for consistency. I improve the statistical properties
of multinomial maximum-score estimators by introducing a pairwise maximum-score estimator
that emphasizes comparisons between two choices at a time. The pairwise maximum-score
estimator uses more of the restrictions from the rank-order property underlying consistency than
some earlier specifications. The estimator does not require sorting algorithms. Also, the estimator
includes only one-dimensional functions of the unknown parameters and so is amenable to the
smoothing procedure of Horowitz (1992).

Identification and consistency rely on the property that choice probabilities are rank ordered
by the deterministic payoffs. I show that rank ordering holds for a subset of choices. A
sufficient condition for the rank-order property is exchangeability in the density of the errors.
Exchangeability places strong restrictions on the form of correlation and heteroskedasticity across
choices for a given agent, but not across agents. To weaken the importance of the restrictions on the
error terms, Bajari, Fox, and Ryan (2006) show how to estimate in the presence of agent-specific
fixed effects over nests of alternatives.

My own personal experience and Monte Carlo studies show multinomial maximum-score
estimation is a tractable and useful procedure for applied work. I hope other researchers consider

estimates should be kept. However, there is no curse of dimensionality in executing an optimization routine multiple
times. The execution time of both programs would be improved by coding them in C or Fortran. Further, hardware-specific
optimizations to the exp function and various logit-specific optimizations will speed up the logit.
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using maximum score to reduce the computational speed of estimation, to handle missing data
on choices, and to make identification more robust and transparent.

Appendix

� The proof of Theorem 1 follows.

Proof of Theorem 1. The proof of consistency involves verifying the conditions of the consistency Theorem 2.1 in Newey
and McFadden (1994). The theorem has four conditions:

(i) The probability limit of the maximum-score objective function, QK
n (β), has a unique global maximum at the

true parameter vector, β0 (constructive identification).
(ii) The parameter space � is compact. This is Assumption 4.

(iii) The probability limit of the objective function, QK
∞(β), is continuous in β.

(iv) The objective function converges uniformly in probability to its limit.

Newey and McFadden treat binary-choice maximum score as an important example of their general consistency theorem,
and go over the regularity conditions needed in some detail. The subset maximum-score objective function is similar.

� Constructive identification. This section will focus on proving Condition (i), that the probability limit of QK
∞(β)

has a unique global maximum at β0. This is also a constructive proof of semiparametric identification.

The probability limit of the objective function. To preview how to compute a probability limit of the objective function,
I will first compute the probability limit of an important term. Recall that the underlying population random variables
generating the data are the vector x of covariate data for all J choices, and the vector ε of error terms for all J choices. In
some applications, the number of choices J is itself random, which is fine in what follows. Recall that I am conditioning
on the subset of choices K, so the n observations come from agents who select choices in K. By a law of large numbers
and the law of iterated expectations,

plim

(
1

n

n∑
a=1

1[ai]

)
= Ex,ε | K {1[i optimal] | β0} = Ex | K {Eε | K {1[i optimal] | x, β0}}

= Ex | K

{
PK (i | x, J , β0)

}
.

The last equality uses the decision rule for a selection, (1), and the notion of a conditional (on K) choice probability. The
final expectation is taken over the conditional on K distribution of all J x’s. Conditioning on K is also important for the
inner expectation over the ε’s.

I apply the same tools to the task of finding the probability limit of the maximum-score objective function. Again
by a law of large numbers and the law of iterated expectations (over the ε’s and the x’s), the probability limit of QK

n (β) is

QK
∞(β) =

K−1∑
i=1

K∑
j=i+1

Ex,ε | K

{
1[i optimal] · 1[x ′

i β > x ′
j β] + 1[ j optimal] · 1[x ′

jβ > x ′
iβ] | β0

}

=
K−1∑
i=1

K∑
j=i+1

Ex | K

{
PK (i | x, J , β0) · 1[x ′

i β > x ′
j β] + PK ( j | x, J , β0) · 1[x ′

j β > x ′
i β]

}
.

The above derivation uses the fact that the indicator functions of the form 1[x ′
i β > x ′

j β] do not depend on the ε’s, and can
be factored out of the expectation over the ε’s, temporarily holding the x’s constant by the law of iterated expectations.

The true parameter vector β0 is a global maximum. I prove that QK
∞(β) has a global maximum at β0 by showing the result

for a given x, the covariate data on all J choices (even though not all of the choices are observed to the econometrician). If
the integrand (the portion of the objective function inside the expected value operator) is maximized at β0 for an arbitrary
point x, the integral (the expectation over the observable covariates x) itself must be maximized at β0.

First consider the case where there is a unique maximum among the two choice probabilities PK (i | x , J , β0)
and PK ( j | x , J , β0). Note that the inequalities in the two indicator functions 1[x ′

iβ > x ′
j β] and 1[x ′

jβ > x ′
iβ] are

mutually exclusive. Only one of the two indicators may be equal to 1 for a given β and x. So, for x and a trial β,
one of the two probabilities of the form PK (i | x , J , β0) will multiply 1, and the other will multiply 0. If there is a
parameter value that always has the maximum of two choice probabilities multiply the 1 and the minimum multiply
the 0, that value is a global maximum. Lemma 1 states that the conditional (on K) choice probabilities are ordered by
the deterministic payoffs. Therefore, Lemma 1 shows that β0 will implement the assignment, and globally maximize
QK

∞(β). In notation, when x ′
i β

0 > x ′
j β

0, we know the integrand of QK
∞(β) at point x is maximized by the value

PK (i | x, J , β0) · 1 + PK ( j | x, J , β0) · 0.
Now I show that the set of points where the maximum of the two choice probabilities is not unique,

PK (i | x, J , β0) = PK ( j | x, J , β0),
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has probability 0, and these points do not contribute positively to the probability limit of the objective function. Ties
in choice probabilities happen when x ′

i β
0 = x ′

j β
0. I use Assumption 3, particularly the condition requiring at least one

continuously and freely varying covariate w = x 1i − x 1 j for choices i and j, to prove that tied probabilities are a probability
0 event. To see this, define the random variable z = x̃ ′

i β̃ − x̃ ′
j β̃, where for choice i, x̃i is the vector of the last d − 1

covariates, in other words, the covariates other than x 1,i . Consider the parameter normalization where β 1 = 1. The case
where β 1 = −1 is symmetric. The event PK (i | x, J , β0) = PK ( j | x, J , β0) happens with probability∫ ∞

−∞

∫ z

z

h(w | z)m(z) dw dz,

where m is the derivable density of z and h is the derivable density of w. Both h and m can be derived from the distribution
GK in Assumption 3. Notice that the upper and lower limits of the integrand are the same, so the event z = w has 0
measure unless there is a point mass at w = z, which is ruled out by Assumption 3. Therefore, the set of tied choice
probabilities has probability 0.

Also, the inequalities in QK
∞(β) are strict, so β = 0 is a global minimum to the objective function, not a global

maximum.

The global maximum β0 is unique. There is still the matter of showing that the global maximum β0 is unique. The
uniqueness argument follows standard semiparametric discrete-choice arguments about point identification, and again
relies on the assumption of a freely varying continuous covariate for each pair of choices w i j . Consider an alternative
parameter vector in �, β−, that for the sake of a proof by contradiction is a global maximum of QK

∞(β). If, for values
of x with positive probability, β− and β0 give different values of the two inequalities of the form 1[x ′

i β > x ′
j β], then β−

will make choice probabilities that are not the maxima of the two choice probabilities enter QK
∞(β), and there will be a

contradiction. In other words, QK
∞(β−) will be lower than QK

∞(β0), because at some points, for example, PK ( j | x, J , β0)
will enter the objective function when PK (i | x, J , β0) is larger.

The question is whether the set of points where β0 and β− make different predictions about the rank ordering of
the two choice probabilities, from the point of view of Lemma 1, has positive measure. The set of points where β0 and
β− make different predictions is

S(β0, β−) = {
x | ((x ′

i − x ′
j )β

0 < 0 < (x ′
i − x ′

j )β
−)

}
∪ {

x | ((x ′
i − x ′

j )β
0 > 0 > (x ′

i − x ′
j )β

−)
}
.

A tilde (∼) refers to all the elements of a vector other than the first element. I will show the argument for β 1 = +1; the
argument for β 1 = −1 is symmetric. Note that the normalization implies β0

1 = β−
1 = +1, as the normalization holds

for both the true and alternative parameter vectors. By separating out the first element of the covariates vector (with its
parameter β 1 normalized to +1), and remembering that w i j = x 1i − x 1 j ,

S(β0, β−) = {
x | (x̃ ′

i − x̃ ′
j )β̃

0 < −wi j < (x̃ ′
i − x̃ ′

j )β̃
−}

∪ {
x | (x̃ ′

i − x̃ ′
j )β̃

0 > −wi j > (x̃ ′
i − x̃ ′

j )β̃
−}

.

If S(β0, β−) has a positive probability, then the alternative β− will make incorrect predictions (relative to the true data-
generating process) with positive probability, and therefore QK

∞(β−) will be lower than QK
∞(β−). Indeed, the set S(β0, β−)

has positive probability because, by Assumption 3 above, w i j has continuous support and is freely varying, and thus has
positive mass over any given interval, specified by the values x̃i and x̃ j of the other covariates. The only other possibility
is that

(x̃ ′
i − x̃ ′

j )β̃
0 = (x̃ ′

i − x̃ ′
j )β̃

−

for all x̃i and x̃ j , which is ruled out because Assumption 3 says the support of the covariates does not lie in a proper linear
subspace of R

d . These arguments show that uniqueness and point identification are proved.
Note that the above arguments do not rely on itemizing the entire choice set, or on working with probabilities or

data on choices outside of K, although the expectations in the probability limits are over covariates and error terms for all
J choices. Therefore, including covariate data on more than K = 2 choices is not required for consistency of a properly
specified maximum-score estimator.

� Continuity of the limiting objective function and uniform convergence. Conditions (iii) and (iv) are satisfied
if the more primitive conditions of Newey and McFadden’s (1994) Lemma 2.4 are satisfied. Lemma 2.4 can be used to
prove continuity of QK

∞(β), Condition (iii), as well as uniform in probability convergence of QK
n (β) to QK

∞(β), which is
Condition (iv). Binary-choice maximum score is an important example in Newey and McFadden, so it is not surprising
that Lemma 2.4’s primitive conditions are satisfied for the subset multinomial maximum-score estimator as well.

The conditions of Lemma 2.4 are that the data across agents are i.i.d., that the objective function terms for each
agent are continuous with probability 1 in β, and that the terms for each agent are bounded by a function whose mean is
not infinite. The underlying population random variables generating the data are x and ε. The data are i.i.d. across agents.

The maximum-score objective function QK
n (β) is not continuous in β because β enters indicator functions in QK

n (β).
Condition (iii) is that the probability limit of the objective function, QK

∞(β), is continuous in β. Lemma 2.4 only requires

C© RAND 2007.
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that the objective-function terms for each agent are continuous with probability 1 in β. Although the terms for each agent
are not continuous in β because of the indicator functions, they are continuous with probability 1 by the support condition
on the covariates, Assumption 3. The points where the objective-function contribution for an agent is not continuous in
β are the points where x ′

i β = x ′
j β. As the continuous covariate w i j is freely varying conditional on the other covariates,

x ′
i β = x ′

j β with probability 0 by a previous argument.
The other condition we need to verify to apply Lemma 2.4 is that the agent-specific terms in QK

n (β) are bounded by
a function with a noninfinite mean. As each agent makes one choice, the maximum score of correct predictions that can
be entered into the objective function is 1 for each agent and pair of choices. Therefore, each agent’s contribution to the
objective function is bounded by the function K − 1.
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