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Agents in two-sided matching games vary in characteristics that are un-
observable in typical data on matching markets. We investigate the
identification of the distribution of unobserved characteristics using
data on who matches with whom. In full generality, we consider many-
to-many matching andmatching with trades. The distribution of match-
specific unobservables cannot be fully recovered without information
on unmatched agents, but the distribution of a combination of unob-
servables, which we call unobserved complementarities, can be identi-
fied. Using data on unmatched agents restores identification.

I. Introduction

Matching games model the sorting of agents to each other. Men sort to
women in marriage on the basis of characteristics such as income, school-
ing, personality, and physical appearance. Upstream firms sort to down-
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stream firms on the basis of the product qualities and capacities of each of
the firms. This paper studies identification in transferable utility match-
ing games. We study one-to-one matching, many-to-many matching, and
matching with trading networks (e.g., Koopmans and Beckmann 1957;
Gale 1960; Shapley and Shubik 1972; Becker 1973; Crawford and Knoer
1981; Kelso and Crawford 1982; Sotomayor 1992, 1999; Hatfield et al.
2013).
There has been recent interest in the structural estimation of transfer-

able utility matching games (e.g., Dagsvik 2000; Choo and Siow 2006;
Levine 2009; Siow 2009; Yang, Shi, and Goldfarb 2009; Graham 2011;
Baccara et al. 2012; Chen and Song 2013; Galichon and Salanié 2015;
Akkus, Cookson, and Hortaçsu 2016; Chiappori and Salanié 2016; Min-
druta, Moeen, and Agarwal 2016; Chiappori, Salanié, and Weiss 2017;
Ahlin 2018; Fox 2018). The papers we cite are unified in estimating some
aspect of the preferences of agents in a matching game from data on
who matches with whom as well as the observed characteristics of agents
or of matches. The sorting patterns in the data combined with assump-
tions about equilibrium inform the researcher about the structural prim-
itives in the market.
Some empirical papers structurally estimating matching games esti-

mate how various structural or equilibrium objects, such as payoffs or
preferences, are functions of the characteristics of agents or matches ob-
served in the data while imposing strong assumptions about the distribu-
tion of the characteristics of agents or matches unobserved in the data.
For example, Choo and Siow (2006) use a one-to-one transferable utility
matching game to study the marriage market in the United States and
estimate how the equilibrium payoffs of men for women vary by the ages
of the man and the woman. Choo and Siow assume (if interpreted in
terms of single-agent preferences rather than total match production)
that men have identical preferences for women in the same measured
demographic class (age 40–45 white females, say), ruling out men having
preferences for characteristics of women such as personality and physi-
cal attractiveness that are not measured in the data. Fox (2018) uses a
model of matching with trades to examine matching between automo-
tive assemblers (downstream firms) and car parts suppliers (upstream
firms) and asks how observed specialization measures in the portfolios of
car parts sourced or supplied contribute to agent profit functions. In
Fox’s study, each trade’s product quality is not directly measured and is
only indirectly inferred.
Ackerberg and Botticini (2002) provide empirical evidence using in-

strumental variables that farmers and landlords sort on scalar unobserv-
ables such as risk aversion and monitoring ability, without formally esti-
mating a matching game or the distribution of the scalar unobservables.
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As the consistency of estimation procedures for matching games de-
pends on assumptions on theunobservables, empirical conclusionsmight
be more robust if the estimated matching games allow richly specified
distributions of unobserved agent heterogeneity. This paper investigates
what data on the sorting patterns between agents can tell us about the
distributions of unobserved agent-specific and match-specific character-
istics relevant for sorting.
We study the nonparametric identification of distributions of unob-

served match heterogeneity and agent heterogeneity in two-sided, trans-
ferable utility matching games and the more general framework of
matching with trading networks (Hatfield et al. 2013). We allow for this
empirically relevant heterogeneity using data on only observed matches
(whomatches with whom), not data from, say, an online dating site on re-
jectedprofiles(Hitsch,Hortaçsu,andAriely2010)oronequilibriumtrans-
fers, such as wages in a labor market or prices in a hedonic equilibrium
model of, say, housing (e.g., Brown and Rosen 1982; Ekeland, Heckman,
and Nesheim 2004; Chiappori, McCann, and Nesheim 2010; Heckman,
Matzkin, and Nesheim 2010; Eeckhout and Kircher 2011). Transfers are
often confidential data in firm contracts and are rarely observed in mar-
riage data (e.g., Choo and Siow 2006; Fox 2018). Our identification argu-
ments use data on many markets with finite numbers of agents in each,
following Fox (2010). This paper contributes to the small literature on
the nonparametric (allowing unknown objects that are restricted to lie
only in spaces of functions) identification of transferable utility match-
ing games (Fox 2010, 2018; Graham 2011).
We first consider a baseline model, which is stripped down to focus on

the key problem of identifying distributions of heterogeneity from sort-
ing data. In our baseline transferable utility matching game, the primi-
tive that governs sorting is the matrix that collects the production values
for each potentialmatch. The production level of eachmatch is additively
separable in observable and unobservable terms. The observable term is
a match-specific characteristic. The unknown primitive is therefore the
distribution (representing randomness across markets) of the matrix that
collects the unobservable terms in the production of each match in a mar-
ket. We call this distribution the distribution of match-specific unobserv-
ables. Match-specific unobservables nest many special cases, such as agent-
specific unobservables.
We first show that the distribution of match-specific unobservables is

not identified in a one-to-one matching game with data on who matches
with whom but without data on unmatched or single agents. We provide
two main theoretical results and many extensions. Our first main theo-
retical result states that the distribution of a change of variables of the
unobservables, the distribution of what we call unobserved complementari-
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ties, is identified. We precisely define unobserved complementarities
below. Our identification proof works by tracing the joint (across possi-
ble matches in a market) cumulative distribution function of these un-
observed complementarities using the match-specific observables. We
also show that knowledge of the distribution of unobserved complemen-
tarities is sufficient for computingmany counterfactual assignment prob-
abilities. Our identification result for unobserved complementarities fol-
lows the emphasis on complementarities in observed characteristics in
the literature on transferable utility matching games (e.g., Becker 1973).
Our second main theoretical result says that the distribution of the prim-
itively specified, match-specific unobservables is actually identified when
unmatched agents are observed in the data.
Empirical researchers might be tempted to specify a parametric distri-

bution of match-specific unobservables. Our theoretical results together
suggest that estimating a matching model with a parametric distribution
of match-specific unobservables will not necessarily lead to credible esti-
mates without using data on unmatched agents, as a more general non-
parametrically specified distribution is not identified. Also, we present
an example of a multivariate normal distribution of match-specific char-
acteristics whose parameters are not parametrically identified.
Our baseline model imposes additive separability between unobserv-

ables and observables in the production of a match. We show that we
can simply condition on other observables not directly used in the pre-
vious identification arguments, relaxing additive separability in a setting
with more observables. In another extension, we identify fixed-across-
markets but heterogeneous-within-a-market coefficients on the match-
specific characteristics used in the baseline model. This relaxes the as-
sumption that the match-specific characteristics enter the production
of each match in the same manner. Still another extension considers
models in which key observables vary at the agent and not thematch level
and enter match production multiplicatively.
We discuss an extension to a model of matching with trades (Hatfield

et al. 2013). In matching with trades, the same agent can make so-called
trades as both a buyer and a seller and can have complicated preferences
over the set of trades. An individual trade generalizes a match in that a
trade can list other specifications, such as the number of board seats given
to an investor (Uetake and Watanabe 2016).
As mentioned above, Choo and Siow assume (if interpreted in terms

of single-agent preferences rather than total match production) that
men have identical preferences for women in the same measured demo-
graphic class (and similarly for the preferences of women for men).
Galichon and Salanié (2015) and Chiappori et al. (2017) call this pref-
erence restriction “separability.” This preference restriction has also been
used in Graham (2011) and Fox (2018). We show that assuming that men
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have identical preferences for women in the samemeasured demographic
class has testable restrictions on the allowable distributions of unobserved
complementarities.
There are many other modeling differences between our paper and

the literature on transferable utility matching games following the ap-
proach of Choo and Siow (2006). We use data on many markets with fi-
nite numbers of players and different realizations of observables and
unobservables in each market; the Choo and Siow approach has been
applied to large markets, each market having a continuum of agents.
We require at least one continuous, observable characteristic per match
or per agent; the Choo and Siow literature in some cases uses only a finite
number of observable characteristic values. The production functions
corresponding to these finite observables are usually recoverable without
further functional form assumptions; we require a particular match or
agent characteristic to enter match production additively separably.
In simultaneous work, Agarwal (2015) and Agarwal and Diamond

(2016) discuss the identification and estimation of distributions of scalar
agent characteristics in nontransferable utility matching games with re-
strictions on preferences in order to ensure a unique stable match. Our
work on transferable utility games allowsmatch-specific characteristics with-
out further restrictions on their joint distribution.

II. Baseline Identification Results

This section analyzes a two-sided, one-to-onematching gamewith transfer-
able utility. This section imposes that all agents must be matched in order
to focus purely on the identification coming from agent sorting and not
from the decision to be single. We also begin the section with a simple
space of explanatory variables. We change these assumptions later.

A. Baseline Model

We use the terms “agents” and “firms” interchangeably. Upstream firm u
and downstream firm d can form a match hu, d i. The monetary transfer
from d to u is denoted as tu,d; we will not require data on the transfers.
The production or total profit from a match hu, d i is

zu,d 1 eu,d , (1)

where zu,d is a scalar match-specific characteristic observed in the data
and eu,d is a scalar match-specific characteristic unobserved in the data
but observable to all firms in the matching game. One match-specific
characteristic zu,d is the distance between the headquarters of firms u
and d. Distance zu,d is always positive and likely enters match production
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with a negative sign; we can always construct a new regressor ~zu,d 5 2zu,d
that enters with a positive sign. The match-specific, unobserved charac-
teristic eu,d generalizes special cases such as eu,d 5 eu � ed , where eu and ed
are unobserved upstream and downstream firm characteristics, respec-
tively. We allow a match-specific coefficient on each zu,d and, separately,
use only agent-specific explanatory variables below.
We can more primitively model production for a match hu, di as the

sum of the profit of u and the profit of d, where the possibly negative
transfer tu,d between d and u enters additively separably into both individ-
ual profits and therefore cancels in their sum. Utilizing some notation
briefly to clarify, if the profit of u at some market outcome is pu

u,d 1 tu,d
and the profit of d is pd

u,d 2 tu,d , then the production of the match hu, di
is equal to pu

u,d 1 pd
u,d 5 zu,d 1 eu,d . Only production levels matter for the

matches that form, andwewill not attempt to identify upstreamfirmprof-
its separately from downstream firm profits, except in the extension to
matching with trades in Section VII.
There areN firms on each side of the market. The term N can also rep-

resent the set {1, . . . , N }. The matrix

z1,1 1 e1,1 ⋯ z1,N 1 e1,N

⋮ ⋱ ⋮

zN ,1 1 eN ,1 ⋯ zN ,N 1 eN ,N

0
BB@

1
CCA

describes the production of all matches in a market, where the rows are
upstream firms and the columns are downstream firms. Let

E 5

e1,1 ⋯ e1,N

⋮ ⋱ ⋮

eN ,1 ⋯ eN ,N

0
BB@

1
CCA, Z 5

z1,1 ⋯ z1,N

⋮ ⋱ ⋮

zN ,1 ⋯ zN ,N

0
BB@

1
CCA

be the matrices of unobservables and observables, respectively, in a mar-
ket. Because the scalar zu,d is an element of the matrix Z, we do not use
uppercase and lowercase letters (or other notation) to distinguish ran-
dom variables and their realizations. Whether we refer to a random var-
iable or its realization should be clear from context.
A market is defined to be the pair (E, Z); agents in a market can match

and agents in differentmarkets cannot. A feasible one-to-one assignment A
is a set of matches A 5 fhu1, d1i,… , huN , dNig, where for this section each
firm is matched exactly once. There areN! feasible assignments. We refer
to the following assumptions in the theoretical results.
Assumption.

A1. Each firm u or d is part of exactly one match in each feasible
assignment A.
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A2. The limiting data are on pairs (A, Z).
A3. The random matrix Z is independent of the random matrix E.
A4. The support of the random matrix Z is RN 2

.
A5. Either the firm indices u and d have common meaning across

markets or the random matrix E has a distribution that is ex-
changeable in agent indices.

Wementioned A1 just before. Assumption A2 says that a researcher ob-
serves the assignment A and thematch-specific characteristics Z for many
markets. The limiting data on (A, Z) from A2 directly identify PrðAjZÞ,
the probability of assignment A being the assignment in a competitive
equilibrium (defined below) given themarket-level match characteristics
Z. Assumption A3 rules out omitted variable bias fromhaving Z be depen-
dent with E. We could in principle address the statistical dependence of E
and Z with instrumental variables. We do not explore instrumenting. We
should mention that the eu,d and zu,d for the realized matches in the ob-
served assignment A will likely be statistically dependent because of the
conditioning on the dependent variable A, part of the outcome to the
matching game. The purpose of A4 is to use large explanatory variable
values to identify the tails of distributions of heterogeneity. The prior ex-
ample of the match characteristic distance does not vary over all of RN 2

because distance is computed using the agent-specific characteristics lati-
tude and longitude. There are other examples ofmatch-specific character-
istics that conceptually can vary independently in N 2 dimensions: say the
past experience of an upstream firm with the observed sector of a down-
stream firm. If all downstream firms in a matching market are in different
sectors, then Z can conceptually vary inRN 2

after recentering experience.
Assumption A5 clarifies that we consider two cases: (1) the same firms ap-
pear in eachmarket, in which case u and d have specificmeanings across
markets; and (2) the labels u and d do not have specific meaning across
markets, and so we assume that the random matrix E has a distribution
that is exchangeable in agent indices. Define the random matrix E to be ex-
changeable in agent indices if the distribution of

Epu ,pd
5

epu 1ð Þ,pd 1ð Þ ⋯ epu 1ð Þ,pd Nð Þ

⋮ ⋱ ⋮

epu Nð Þ,pd 1ð Þ ⋯ epu Nð Þ,pd Nð Þ

0
BB@

1
CCA

is the same as E for all permutations pu and pd. If agent indices do not
have common meaning across markets, then the distribution of the ran-
dom matrix Zmight also be exchangeable in agent indices, although we
do not need to explicitly assume this.
We now discuss more details of the matching game. An outcome is a list

of matches and transfers between matched agents:
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hu1, d1, tu1,d1
i,… , huN , dN , tuN ,dN

if g:
We examine identification when researchers do not observe transfers,
which are often part of confidential contracts. An outcome is pairwise sta-
ble if it is robust to deviations by pairs of two firms, as defined in refer-
ences such as Roth and Sotomayor (1990, chap. 8). We omit standard
definitions that can be easily found in the literature. An assignment A
is called pairwise stable if there exists an underlying outcome (including
transfers) that is pairwise stable. The assignment in a pairwise stable out-
come is equivalent to the assignment in a competitive equilibrium in this
model (Hatfield et al. 2013). To keep the same solution concept through-
out the paper, we say that the paper uses the solution concept of compet-
itive equilibrium.
The literature cited previously proves that the existence of a compet-

itive equilibrium is guaranteed and that an assignment A is part of a com-
petitive equilibrium if and only if it maximizes the sum of production

s A; E , Zð Þ 5 o
hu,di∈A

zu,d 1 eu,dð Þ:

If zu,d or eu,d has continuous support, s(A; E, Z) has a unique maximizer
withprobabilityoneand therefore thecompetitive equilibriumassignment
is unique with probability one. The sum of the unobserved production of as-
signment A relative to the particular assignment A1 5 fh1, 1i,… , hN ,N ig
is

~s A; Eð Þ 5 o
hu,d i∈A

eu,d 2 o
hu,d i∈A1

eu,d : (2)

Note that eachmatch characteristic zu,d enters production (1) additively,
the sign and coefficient on each zu,d in production is common across
matches (normalized to be one), each zu,d has large support (A4), and Z
is independent of E (A3). Similar large support explanatory variables
have been used to prove point identification in the binary and multino-
mial choice literature (e.g., Manski 1988; Ichimura and Thompson 1998;
Lewbel 1998, 2000; Matzkin 2007; Gautier and Kitamura 2013; Berry and
Haile 2016; Fox and Gandhi 2016). In this literature, failure to have
large support often results in identifying the cumulative distribution
function (CDF) of the unobserved heterogeneity at a subset of points.
Consider a binary choice model of buying a can of soda (or not) in which
the large support regressor is the (negative) price of the soda, which var-
ies across the data set. If we assume that consumers’ willingness to pay for
the can of soda is bounded by $0 and $10, we can identify the CDF of the
willingness to pay for soda over all points if observable prices range be-
tween $0 and $10. If prices range only between $0 and $5, we can identify
the fraction of consumers with values above $5 by seeing the fraction
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who purchase at $5. We cannot identify the fraction with values above $6
or any value greater than $5. If we do not restrict the support of the will-
ingness to pay, we need prices to vary across all of R (including negative
prices if consumers may have negative willingness to pay) to identify the
CDF of the willingness to pay for soda at all points.

B. Definition of Identification

The unknown primitive whose identification we first explore is the CDF
G(E), which reflects how the match unobservables vary across matching
markets. We do not restrict the support of E and we do not assume inde-
pendence across the eu,d’s within matching markets. This allows for many
special cases, such as the case eu,d 5 eu � ed mentioned earlier.
The probability of assignment A occurring given the match character-

istics Z is

Pr A ∣ Z ;Gð Þ 5
ð
E

1 A competitive eq: assignment ∣ Z , E½ �~dG Eð Þ, (3)

where 1½A competitive eq: assignment ∣ Z , E � is equal to one when A is a
competitive equilibrium assignment for the market (E, Z). The symbol ~d
in ~dG stands in for the differential symbol d from calculus, to distinguish
the differential from our notation d for a downstream firm.
The distribution G is said to be identified whenever, for G 1 ≠ G 2,

PrðA ∣ Z ;G 1Þ ≠ PrðA ∣ Z ;G 2Þ for some pair (A, Z). The terms G 1 and
G 2 give a different probability for at least one assignment A given Z. If
G has continuous and full support so that all probabilities PrðAjZ ;GÞ
are nonzero (for every (A, Z), s(A; E, Z) will be maximized by a range
of E) and continuous in the elements of Z, the existence of one such pair
(A, Z) implies that a set of Z with positivemeasure satisfies PrðA ∣ Z ;G 1Þ ≠
PrðA ∣ Z ;G 2Þ.
Our positive identification results will be constructive, in that we can

trace a distribution such as G(E) using variation in an object such as Z.
Also, our identification arguments can be used to prove the consistency
of a nonparametric mixtures estimator for a distribution G of heteroge-
neous unobservables E, as Fox, Kim, and Yang (2016) show for a particu-
lar, computationally simple mixtures estimator. The proof of consistency
in Fox et al. for one estimator requires the heterogeneous unobservable
(such as E) to have compact support, which is not required here for iden-
tification. A second estimator in Fox et al. allows the support of E to be
RdimðEÞ. For largemarkets, these estimators may have computational prob-
lems arising from the combinatorics underlying the set of matching game
assignments. Fox (2018) uses a maximum score estimator to avoid these
computational problems under a generalization of the setup in Choo and
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Siow (2006) but does not estimate a distribution of unobservables. Our
identification arguments do not address computational issues. Likewise,
randomvariables such asE are of large dimension, and nonparametrically
estimating a CDF such as G(E) results in a rate of convergence that de-
pends on the size of the random matrix E.

C. Nonidentification of the Distribution of Match-Specific
Characteristics

Asmaximizing s(A; E, Z) determines the assignment seen in the data, the
ordering of s(A; E, Z) across assignments A as a function of E and Z is a
key input to identification.We can add a constant to the production of all
matches involving the same upstream firm and the ordering of the pro-
duction s(A; E, Z) of all assignments will remain the same. This noniden-
tification result is unsurprising: the differential production of matches
and hence assignments governs the identity of the competitive equilib-
rium assignment in any market.
We will show another nonidentification result. Consider the two real-

izations of matrices of unobservables

E1 5

e1,1 e1,2 ⋯ e1,N

e2,1 e2,2 ⋯ e2,N

⋮ ⋮ ⋱ ⋮

eN ,1 eN ,2 ⋯ eN ,N

0
BBBBB@

1
CCCCCA,

E2 5

e1,1 e1,2 1 1 ⋯ e1,N

e2,1 2 1 e2,2 1 1 2 1 ⋯ e2,N 2 1

⋮ ⋮ ⋱ ⋮

eN ,1 eN ,2 1 1 ⋯ eN ,N

0
BBBBB@

1
CCCCCA:

It is easy to verify that sðA; E1, ZÞ 5 sðA; E2, ZÞ for all A, Z, which means
that the competitive equilibrium assignment A is the same for E1 and E2,
for any Z. Therefore, it is not possible to separately identify the relative
frequencies of E1 and E2 in the data-generating process; the support of
the random matrix E is too flexible.
We summarize the two counterexamples in the following nonidenti-

fication proposition. Note that nonidentification results always involve
stating one set of conditions that are insufficient for identification.
Proposition 1. Let A1–A5 hold. Despite imposing these assump-

tions, the distribution G(E) of market-level unobserved match character-
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istics is not identified in a matching game in which all agents must be
matched.
Consider a simple example focusing on two upstream firms and two

downstream firms. If we see the matches hu1, d1i and hu2, d2i in the data,
we cannot know whether this assignment forms because hu1, d1i has high
production, hu2, d2i has high production, hu1, d2i has low production, or
hu2, d1i has low production.

D. Unobserved Assignment Production

The competitive equilibrium assignment A maximizes the function
sðA; E , ZÞ 5 oh u,d i∈Aðzu,d 1 eu,dÞ. This looks like a fictitious single agent,
the social planner, maximizing a utility function. Rough intuition from
the multinomial choice literature, cited earlier, suggests that the distri-
bution H ð~SÞ of

~S 5 ~s A2; Eð Þ,… ,~s AN !; Eð Þð Þ

5 o
hu,d i∈A2

eu,d 2 o
hu,d i∈A1

eu,d ,… , o
hu,d i∈AN !

eu,d 2 o
hu,d i∈A1

eu,d

 !

might be identified, where the long vector ~S collects the unobserved pro-
duction of N ! 2 1 assignments relative to the reference assignment A1 5
fh1, 1i,… , hN ,N ig. Directly citing the multinomial choice literature re-
quires a vector of N ! 2 1 assignment-specific observables with support
RN !21, where a hypothetical assignment-specific observable would enter
only s(A; E, Z) for a particular A. Assignment-specific observables do
not exist in our matching game. However, the distribution H ð~SÞ is iden-
tified using only the variation in match-specific characteristics Z assumed
earlier.
Lemma 1. Let A1–A5 hold. The distributionH ð~SÞ of unobserved pro-

duction for all assignments is identified.
The proof, in the appendix, shows that large and product support on

Z, A4, allows us to trace H ð~SÞ. Failure of A4 means that the argument in
the constructive proof for lemma 1 identifiesH ð~SÞ at a subset of values of
~S .
Example 1. Consider the case N 5 3. The matrices of unobserved

and observed match characteristics are

E 5

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

0
BB@

1
CCA, Z 5

z1,1 z1,2 z1,3

z2,1 z2,2 z2,3

z3,1 z3,2 z3,3

0
BB@

1
CCA:
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There are six possible assignments,

A1 5 h 1, 1 i, h 2, 2 i, h 3, 3 if g,
A2 5 h 1, 2 i, h 2, 1 i, h 3, 3 if g,
A3 5 h 1, 3 i, h 2, 2 i, h 3, 1 if g,
A4 5 h 1, 2 i, h 2, 3 i, h 3, 1 if g,
A5 5 h 1, 1 i, h 2, 3 i, h 3, 2 if g,
A6 5 h 1, 3 i, h 2, 1 i, h 3, 2 if g,

(4)

and

~S 5

~s A2; Eð Þ
~s A3; Eð Þ
~s A4; Eð Þ
~s A5; Eð Þ
~s A6; Eð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

5

e1,2 1 e2,1 1 e3,3 2 e1,1 1 e2,2 1 e3,3ð Þ
e1,3 1 e2,2 1 e3,1 2 e1,1 1 e2,2 1 e3,3ð Þ
e1,2 1 e2,3 1 e3,1 2 e1,1 1 e2,2 1 e3,3ð Þ
e1,1 1 e2,3 1 e3,2 2 e1,1 1 e2,2 1 e3,3ð Þ
e1,3 1 e2,1 1 e3,2 2 e1,1 1 e2,2 1 e3,3ð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (5)

Lemma 1 states that the distribution H ð~SÞ is identified.

E. Unobserved Complementarities

The random vector ~S has N ! 2 1 elements. Estimating a joint distribu-
tion of N ! 2 1 elements is not practical in typical data sets. We now intro-
duce the concept of unobserved complementarities as an intuitive, lower-
dimensional random variable whose distribution is point identified if and
only if H ð~SÞ is point identified. References such as Fox (2010) and Gra-
ham (2011) prove that complementarities in observed agent or match
characteristics are identified using data onmatches. Themain identifica-
tion theorembelow states that the distribution of unobserved complemen-
tarities can be identified.
Definition. The unobserved complementarity between matches hu1, d1i

and hu2, d2i is

cu1,d1,u2,d2
5 eu1,d1

1 eu2,d2
2 eu1,d2

1 eu2,d1
ð Þ: (6)

The unobserved complementarities capture the change in the unob-
served production when two matched pairs hu1, d1i and hu2, d2i exchange
partners and the matches hu1, d2i and hu2, d1i arise.
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Fixing a realization of the unobservedmatch characteristics E, one can
calculate the market-level array (of four dimensions) comprising all un-
observed complementarities

C 5 cu1,d1,u2,d2
∣ u1, u2, d1, d2 ∈ Nð Þ: (7)

We consider only values C formed from valid values of E.
There are N 4 values cu1,d1,u2,d2

in C given any realization E. Also, there are

N

2

 !2

5
N 4

4
2

N 3

2
1

N 2

4

unobserved complementarities in C with a unique set of four firms: two

upstream firms and two downstream firms;
�
N
2

�2
is on the order of N 4.

However, all unobserved complementarities canbe formed froma smaller
set of other unobserved complementarities by addition and subtraction.
Let

bu,d 5 c1,1,u,d 5 e1,1 1 eu,d 2 e1,d 1 eu,1ð Þ (8)

be an unobserved complementarity fixing the identities of the upstream
firm u1 and the downstream firm d1 to both be one. Define the matrix

B 5

b2,2 ⋯ b2,N

⋮ ⋱ ⋮

bN ,2 ⋯ bN ,N

0
BB@

1
CCA,

which contains all unique values of bu,d for a market. The matrix B con-

tains ðN 2 1Þ2 elements. The following proposition shows we can restrict
attention to B instead ofC and hence focus on identifying the joint distri-
bution F(B) of the randommatrix B.
Proposition 2.

1. Every element of C is a linear combination of elements of B. The
specific linear combination does not depend on the realizations
of C or B.

2. For any CDF F(B), there exists G(E) generating F(B) by the ap-
propriate change of variables in (8).

3. If E is exchangeable in agent indices, then so is B.

This proposition does not require any of A1–A5. By the first part of the
proposition, we can focus on identifying the distribution of the ðN 2 1Þ2
elements in B instead of all N 4 elements in C. The second statement in
the proposition allows us to identify F(B) without restrictions on the sup-

unobserved heterogeneity in matching games 1351



port of B or the dependence between the elements of B, as any F(B) is
compatible with some distribution G(E) of the primitive matrix of match-
specific unobservables E. The third statement in the proposition shows
that in a typical empirical context in which the distribution of primitive
unobservables is exchangeable in agent indices, the distribution of unob-
served complementarities is also exchangeable in agent indices. We now
present examples of some of the claims in the proposition.
Example 1 (N 5 3). There are 3! 5 6 assignments; N 4 5 81 and�

N
2

�2
5 9. There are four unobserved complementarities in B:

B 5
b2,2 b2,3

b3,2 b3,3

 !

5
e1,1 1 e2,2 2 e1,2 1 e2,1ð Þ e1,1 1 e2,3 2 e1,3 1 e2,1ð Þ
e1,1 1 e3,2 2 e1,2 1 e3,1ð Þ e1,1 1 e3,3 2 e1,3 1 e3,1ð Þ

 !
:

(9)

The first part of proposition 2 claims that the 81 elements in C can be
constructed from the four elements in B. For one example,

c2,2,3,3 5 e2,2 1 e3,3 2 e2,3 1 e3,2ð Þ 5 b2,2 2 b2,3 2 b3,2 1 b3,3:

Example 2. Let the distribution G(E) be exchangeable in agent indi-
ces. Also let G(E) be multivariate normal with zero means. The variance
matrix of the distribution G is parameterized by the four parameters

Cov eu1,d1
, eu2,d2

ð Þ 5 w1  if  u1 ≠ u2, d1 ≠ d2,

Cov eu1,d1
, eu2,d1

ð Þ 5 w2  if  u1 ≠ u2,

Cov eu1,d1
, eu1,d2

ð Þ 5 w3  if  d1 ≠ d2,

Var eu1,d1
ð Þ 5 w2:

One can use the properties of linear changes of variables for multivariate
normal distributions to algebraically derive the distribution F(B) of un-
observed complementarities. The distribution F(B) is itself exchange-
able in agent indices (proposition 2.3) and is multivariate normal with
a variance matrix with diagonal and off-diagonal terms

Cov bu1,d1
, bu2,d2

ð Þ 5
1

4
n2  if  u1 ≠ u2, d1 ≠ d2,

Cov bu1,d1
, bu2,d1

ð Þ 5
1

2
n2  if  u1 ≠ u2,

Cov bu1,d1
, bu1,d2

ð Þ 5
1

2
n2  if  d1 ≠ d2,

Var bu1,d1
ð Þ 5 n2,
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where thenewparameter n2 5 4ðw2 1 w1 2 w2 2 w3Þ. This example shows
the reduction of information from considering unobserved complemen-
tarities insteadofunobservedmatch characteristics. In this example,G(E)
is parameterized by four parameters while the induced F(B) has only one
unknownparameter.Anestimator for theparametersw1,w2,w3, andw2 will
be inconsistentunderA1–A5asonly a linear combinationof those fourpa-
rameters is identified.

F. Identification of Unobserved Complementarities

We have shown that H ð~SÞ is identified, where recall ~S 5 ð~sðA2, EÞ,… ,
~sðAN !, EÞÞ. We now show that identification of H ð~SÞ gives the identifica-
tion of F(B), the distribution of unobserved complementarities.
Let

~r A; Bð Þ 5 o
h u,d i∈A

bu,d 2 o
h u,d i∈A1

bu,d , (10)

where for notational compactness we define bu,1 5 b1,d 5 0 for all u and
d. The term ~rðA; BÞ gives the sum of the unobserved complementarities
in B corresponding to the indices of the matches in A minus the same
sum for A1 5 fh1, 1i,… , hN ,N ig.
One of the main results of the paper is that the distribution F(B) of

unobserved complementarities is identified.
Theorem 1.

1. ~sðA; EÞ 5 ~r ðA; BÞ for any A and where B is formed from E.
2. ~r ðA; B1Þ 5 ~rðA; B2Þ for all A if and only if B1 5 B2.
3. If A1–A5 hold, the distribution F(B) is identified.

The proof is in the appendix. The first part of the theorem states that
the sum of unobservedmatch production for an assignment can be com-
puted using the elements of B. Therefore, knowledge of B can be used to
compute competitive equilibrium assignments, for example, for coun-
terfactual analysis as we discuss in Section II.I. Likewise, knowledge of
F(B) lets one calculate assignment probabilities PrðAjZ ; F Þ. The second
part of the theorem states that there is a one-to-onemapping between the
sums of unobserved assignment production for assignments and values
of B. Therefore, the third part of the theorem states that as the distribu-
tion H ð~SÞ of the sums of unobserved match production for assignments
is identified under A1–A5, so is the distribution F(B) of unobserved match
complementarities.
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Example 1 (N 5 3). By definition,

~r A2; Bð Þ
~r A3; Bð Þ
~r A4; Bð Þ
~r A5; Bð Þ
~r A6; Bð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

5

b1,2 1 b2,1 1 b3,3 2 b1,1 1 b2,2 1 b3,3ð Þ
b1,3 1 b2,2 1 b3,1 2 b1,1 1 b2,2 1 b3,3ð Þ
b1,2 1 b2,3 1 b3,1 2 b1,1 1 b2,2 1 b3,3ð Þ
b1,1 1 b2,3 1 b3,2 2 b1,1 1 b2,2 1 b3,3ð Þ
b1,3 1 b2,1 1 b3,2 2 b1,1 1 b2,2 1 b3,3ð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

5

b3,3 2 b2,2 1 b3,3ð Þ
b2,2 2 b2,2 1 b3,3ð Þ
b2,3 2 b2,2 1 b3,3ð Þ

b2,3 1 b3,2 2 b2,2 1 b3,3ð Þ
b3,2 2 b2,2 1 b3,3ð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

5

2b2,2

2b3,3

b2,3 2 b2,2 1 b3,3ð Þ
b2,3 1 b3,2 2 b2,2 1 b3,3ð Þ

b3,2 2 b2,2 1 b3,3ð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

(11)

where the second equality uses bu,1 5 b1,d 5 0 for all u and d. Then using
(9) for each of the four bu,d’s and (5) for each of the five ~sðA; EÞ’s allows
one to algebraically verify theorem 1.1 for N 5 3. The interesting direc-
tion of theorem 1.2 for N 5 3 states that B1 5 B2 whenever ~r ðA; B1Þ 5
~rðA; B2Þ for all A. This direction can be verified because ~r ðA2; BÞ through
~rðA6; BÞ can be easily solved for the four elements of B. The less interest-
ing direction of theorem 1.2 always holds by the definition of ~r ðA; BÞ to
be a function of B. Given that we previously showed that H ð~SÞ is identi-
fied, F(B) is also identified.

G. Conditioning on Other Observed Variables X

In addition to the match-specific characteristics Z, researchers often ob-
serve other match-specific and agent-specific characteristics, which we
collect in the random variable X, which we think of as a long vector. Note
that we number new assumptions in groups by letter with the number
indicating in most cases the previous assumption that is superseded.
We do not repeat unchanged assumptions.
Assumption. B2. The limiting data are on triples (A, Z, X).
Assumption B2 allows the direct identification of PrðAjZ , X Þ, the

probability of assignment A being the competitive equilibrium assign-
ment given the market-level match characteristics Z and X. Conditioning
on X is straightforward, and the identification of unobserved comple-
mentarities conditional on X immediately follows from theorem 1.3, as
that result does not use variation in X.
Corollary 1. Let A1 and B2 hold. Also let A3–A5 hold conditional

on X. Then the distribution F ðBjX Þ is identified.
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Example 3. Let

X 5 N , xuð Þu∈N , xdð Þd∈N , xu,dð Þu,d∈Nð Þ,
where xu is a vector of upstream firm characteristics, xd is a vector of
downstream firm characteristics, and xu,d is a vector of match-specific
characteristics. Say match production is

xu � xdð Þ0bu,d,1 1 x 0
u,dbu,d,2 1 mu,d 1 zu,d , (12)

where mu,d is a random intercept capturing unobserved characteristics of
both u and d, bu,d,1 and bu,d,2 are random coefficient vectors specific to the
match, and xu � xd is a vector of all interactions between upstream and
downstream characteristics. Then define

eu,d 5 xu � xdð Þ0bu,d,1 1 x 0
u,dbu,d,2 1 mu,d

and let (6) define unobserved complementarities. Then we identify
F ðBjX Þ by corollary 1. We could further attempt to unpack the identified
F ðBjX Þ into the distribution of individual random coefficients and addi-
tive unobservables, such as the vectors bu,d,1 and bu,d,2 and the unobserved
complementarities induced only by the scalar mu,d in the example pro-
duction function (12). We would need to assume full independence be-
tween the primitive unobservables and the elements of X. Using (12), we
can think of the definition of bu,d, (8), as defining a system of ðN 2 1Þ2
seemingly unrelated equations, relating bu,d to the elements of X, the ran-
dom coefficients, and the additive unobservables. Masten (forthcoming)
studies in part seemingly unrelated regressions with random coefficients
and shows that the marginal distribution of each random coefficient or
additive unobservable is identified but the joint distribution of the ran-
dom coefficients and additive unobservables entering all equations is
sometimes not identified.

H. Heterogeneous Coefficients on Match Characteristics

Define the production to a match hu, di to be

eu,d 1 gu,d � zu,d , (13)

where gu,d is a match-specific coefficient. We use the matrix G 5
ðgu,dÞu,d∈N . The matrix G is fixed across markets. Therefore, the gu,d are
fixed parameters to be identified and not random coefficients. Fixing
coefficients across markets but not within markets makes sense in a con-
text in which firm indices like u and d have a consistent meaning across
markets. For example, the same set of upstream and downstream firms
may participate in multiple matching markets, as in Fox (2018), where
each market is a separate automotive component category. As we need
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the zu,d’s to identify F ðBjX Þ, we rule out the case in which any gu,d 5 0.
We also apply a scale normalization on production by setting g1,1 5 ±1.
Assumption.

B5. The firm indices u and d have common meaning across mar-
kets conditional on X.

B6. Every element gu,d of G is nonzero and g1,1 ∈ f21, 1g.

Theorem 2. Let A1, B2, B5, and B6 hold. Also let A3 and A4 hold
conditional on X. Then the distribution F ðBjX Þ and the fixed matrix
of parameters G 5 ðgu,dÞu,d∈N are identified.
The proof is in the appendix. We could also study the production

function (13) when each gu,d is a random coefficient such that the ran-
dommatrix G 5 ðgu,dÞu,d∈N has some joint distribution J(G) that describes
how G varies across markets. An identification at infinity proof tech-
nique, where all but two zu,d’s are set to 2∞, identifies the marginal dis-
tribution of each gu,d but not the joint distribution J(G) by reference to
results on binary choice with random coefficients (Ichimura and Thomp-
son 1998; Gautier and Kitamura 2013).
Consider a setupwith observable types as inChoo and Siow (2006). Each

agent u has a measured (in the data) agent type of wu from a finite set of
upstreamfirm typesWU , and similarly, each agent d has ameasured agent
type ofwd from a finite set of downstreamfirm typesWD. HereU andD are
simply labels distinguishing terms for upstream and downstream firms.
Let W 5 ððwuÞu∈N , ðwdÞd∈N Þ be the random vector of type membership
in a market. In marriage, observed types could refer to college and high
school educated men and women. Let the production function be

eu,d 1 �gwu ,wd
� zu,d ,

where

�G 5 �gwu ,wd
ð Þwu∈WU ,wd∈WD

is amatrix of fixed parameters �gwu ,wd
specific to a pair of agent typeswu and

wd. This suggested use of demographic classes is partially reminiscent of
Chiappori et al. (2017), who use data over time on the US marriage mar-
ket to estimate a different variance of the type I extreme value (logit) util-
ity errors in a Choo and Siow (2006) style model for each male demo-
graphic class and for each female demographic class.
Assumption.

C2. The limiting data are on tuples (A, Z, X, W ).
C6. Every element �gwu ,wd

of �G is nonzero and �g1,1 ∈ f21, 1g.
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C7. The support ofW conditional on X is such that all possible values
of the pair of types wu, wd (given the finite setsWU andWD) occur
together with the pair 1, 1 in the support of W.

Corollary 2. Let A1, C2, C6, and C7 hold. Also let A3–A5 hold con-
ditional on X andW. Then the distribution F ðBjX ,W Þ and the fixed ma-
trix of parameters �G 5 ð�gwu ,wd

Þwu∈W U ,wd∈W D are identified.
Proof. By C7, condition on a value of W that contains upstream firm

type 1 and downstream firm type 1 (to use the scale normalization in C6)
and a value of X. Even though u and dmay lack commonmeaning across
markets according to A5, we still wish to apply theorem 2, which uses B5
and hence some labels, say ~u and ~d, with common meaning across mar-
kets. If all types wu and wd in a realization of W occur only once, then by
conditioning on W we can interpret each firm type wu or wd in W as in-
dexing a particular firm ~u or ~d, as in B5. IfW has two or more firms with
the same type wu or wd, then the allocation of the two firms to ~u’s or ~d’s
with constant meaning across markets can be done arbitrarily within
each type wu or wd in each market, as long as ~u and ~d each correspond
to the same type across markets for a given W. Then apply theorem 2,
which is possible asW is fixed, A3 and A4 are the same once we condition
on W and X, and C2 is similarly an analogue to B2. If there is a pair of
types wu, wd that are not both in the particular W that has been condi-
tioned on, simply condition on another value of W that contains that
pair wu, wd (and the firm types in the scale normalization in C6) and re-
peat the use of theorem 2. QED

I. Counterfactuals

What counterfactuals are identified when F ðBjX Þ is identified?
Example 4. Some counterfactuals require additional structure, which

we now state in an example. Let

eu,d 5 x 0
u,db 1 mu,d ,

where xu,d is a vector ofmatch-specific observables,mu,d is a match-specific
unobservable, and b is a vector of homogeneous parameters. Let X 5
ðxu,dÞu,d∈N . Define the unobserved complementarities in mu,d to be

ou1,d1,u2,d2
5 mu1,d1

1 mu2,d2
2 mu1,d2

1 mu2,d1
ð Þ:

The identification of F ðBjX Þ allows the identification of the parameter b
under the additional restriction E ½mu,d jX � 5 0 for all u, d ∈ N and a lin-
ear independence condition on the vector

xu1,d1
1 xu2,d2

2 xu1,d2
1 xu2,d1

ð Þ:
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A full independence assumption between mu,d and X will also identify the
CDF I(O) of the random matrix O 5 ðou,dÞu,d∈N from the identification of
F ðBjX Þ. After b and I(O) are identified, the ability to compute assign-
ment probabilities in theorem 1.1 identifies counterfactual assignment
probabilities based on changes to X outside of its observed support or
based on changes to b and I, as in many empirical matching papers
(e.g., Choo and Siow 2006; Gordon and Knight 2009; Yang et al. 2009;
Christakis et al. 2010; Baccara et al. 2012; Banerjee et al. 2013; Chen
and Song 2013; Park 2013; Akkus et al. 2016; Pan 2017).
A smaller set of matching papers considers counterfactual experiments

that restrict matching to a subset of observed agents (e.g., Uetake 2014;
Yang and Goldfarb 2015; Uetake and Watanabe 2016). The distribution
of the corresponding unobserved complementarities of a subset of agents
is formedbymarginalizing the identified F ðBjX Þ, and the resulting assign-
ment choice probabilities can be computed by theorem 1.1. Identifying
F ðBjX Þ and not the primitive GðE jX Þ does not permit the identification
of all counterfactuals. For example, say a counterfactual doubles the stan-
dard deviation of match-specific unobservables, eu,d. Then this change to
GðE jX Þ cannot be explored as GðE jX Þ itself is not identified.

III. Testing

This section explores whether two special cases of themodel can be tested
and whether the general model as stated is overidentified.

A. Testing That the Elements of E Are Identically
and Independently Distributed

We first explore testing the assumption that F ðE jX Þ is such that the ele-
ments eu,d of E are identically and independently distributed (i.i.d.) con-
ditional on X, within a market. Can this assumption be tested on the ba-
sis of the identification result corollary 1? The answer is no.
Proposition 3. Even if A1–A5 hold conditional on X, the assump-

tion that the elements of E are i.i.d. conditional on X cannot always be
tested.
Proof. The proof of nontestability is given by example. Example 2

shows an example of a multivariate normal distribution for E that is ex-
changeable in agent indices. By theorem 1.3, the parameter n2 5 4ðw2 1
w1 2 w2 2 w3Þ in example 2 is identified. The case of i.i.d. eu,d is that w1 5
w2 5 w3 5 0. Two values of (w2, w1, w2, w3) giving the same n2 5 4ðw2 1
w1 2 w2 2 w3Þ lead to the same assignment probabilities by theorem 1.1.
Any identified value of v 2 can be explained solely with the parameter w2,
so the hypothesis that w1 5 w2 5 w3 5 0 cannot be tested through the
identification of v 2. QED
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B. Testing That GðE jX Þ Satisfies the Separability
Assumption from Choo and Siow (2006)

We next consider testing a restriction on GðE jX Þ used in Choo and Siow
(2006) and labeled the separability assumption by Galichon and Salanié
(2015) and Chiappori et al. (2017). The restriction applies when, follow-
ing the setup of theorem 2, each upstream firm u has a measured (in the
data) agent type of wu in a typically finite set of upstream firm types WU

and, similarly, each downstream firm has a measured agent type of wd in
a set of types WD. Types are collected into the market-specific matrix W,
as before.
Let eu,d 5 eUu,d 1 eDu,d , where eUu,d and eDu,d are two other terms to be dis-

cussed now. The Choo and Siow (2006) separability assumption is that
eDu,d 5 eDu0,d if u and u0 satisfy wu 5 wu0 , meaning that u and u0 have the same
types; and similarly, eUu,d 5 eUu,d 0 if d and d 0 satisfy wd 5 wd 0 . The idea in mar-
riage could be that each man u has identical preference shocks eUu,d for
women d in the same demographic group wd. We prove the following
testable necessary condition if the Choo and Siow restrictions hold. Re-
call the definition of unobserved complementarities in (6).
Proposition 4. Let the Choo and Siow separability restrictions hold.

Then cu1,d1,u2,d2
5 0 when wu1

5 wu2
and wd1

5 wd2
.

Proof. Using the definition of separability,

eu1,d1
5 eUu1,d1

1 eDu1,d1
, eu1,d2

5 eUu1,d1
1 eDu1,d2

,

eu2,d1
5 eUu2,d1

1 eDu1,d1
, eu2,d2

5 eUu2,d1
1 eDu1,d2

:

It follows from algebra that

cu1,d1,u2,d2
5 eu1,d1

1 eu2,d2
2 eu1,d2

2 eu2,d1
5 0:

QED
One can identify F ðBjX Þ and then form the identified distribution of

terms like cu1,d1,u2,d2
5 0 when wu1

5 wu2
and wd1

5 wd2
. If the distribution

does not put all mass on cu1,d1,u2,d2
5 0, the Choo and Siow separability as-

sumption is rejected.

C. Overidentification of F ðBjX Þ
Despite the model primitive GðE jX Þ not being identified, the distribu-
tion F ðBjX Þ is overidentified.
Proposition 5. Let A1 hold and let A2–A5 hold conditional on X.

Then the distribution F ðBjX Þ is identified only from PrðA1jZ , X Þ, where
A1 5 fh1, 1i,… , hN ,N ig. Therefore, F ðBjX Þ is overidentified.
Proof. The proof of lemma 1 works by setting H ð~S jX Þ 5 PrðA1jZ , X Þ,

whereA1 is the diagonal assignment fh1, 1i,… , hN ,N ig and Z is a specific
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value chosen on the basis of the value of ~S . One can identifyH ð~S jX Þ and
F ðBjX Þ if one observes only whether assignment A1 occurs in a market or
not; A1 is just one of N! assignments. Given the adding-up constraint that
the sum of probabilities of assignments is always one, there are N ! 2 2
other probabilities PrðAjZ , X Þ for each Z, X available to overidentify the
model. QED
The necessity of using only one assignment probability in a proof of

identification is analogous to identification arguments for the single-
agent multinomial choice model, where only the probability of a single
choice is necessary for identification (e.g., Thompson 1989; Lewbel 2000).

IV. Agent-Specific Characteristics

Match-specific z’s with full support are not always available in data sets. For
example, say that the induced match-specific characteristic zu,d 5 zu � zd ,
where zu is an upstream firm characteristic and zd is a downstream firm
characteristic. Likewise, say eu,d 5 eu � ed , where eu and ed are unobserved
agent-specific characteristics. The production function (1) becomes

eu � ed 1 zu � zd : (14)

It is important for our identification argument that the unobservables
have the same dimension as the observables and that observables and
unobservables enter (11) using similar functional forms. All assignments
would be part of a competitive equilibrium if the match production was
instead eu 1 ed 1 zu 1 zd . Define the long vectors ~Z 5 ððzuÞu∈N , ðzdÞd∈N Þ
and ~E 5 ððeuÞu∈N , ðedÞd∈N Þ.
Assumption.

D2. The limiting data are on triples (A, ~Z , X).
D3. The random vector ~Z is independent of the random vector ~E

conditional on X.
D4. The support of the random vector ~Z conditional on X is R2N .
D5. Either the firm indices u and d have common meaning across

markets conditional on X or the random vector ~E has a dis-
tribution that is exchangeable in agent indices conditional
on X.

Assumption D4 does not imply A4; the matrix Z of match characteris-
tics in which zu,d 5 zu � zd lacks support on RN 2

under D4.
Proposition 6. Let A1 and D2–D5 hold. The distribution F ðBjX Þ of

unobserved complementarities is identified.
The short proof is in the appendix. One can alter the first lines of the

proof of lemma 1, and then that lemma and hence the remainder of the
identification machinery leading up to and including theorem 1 will ap-
ply to the agent-specific case.
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V. Data on Unmatched Agents

We have considered matching games in which all agents have to be
matched, A1. We infer F ðBjX Þ from sorting patterns in the data when
only data on observed matches are available. For example, it may be un-
reasonable to assume that data on all potential entrants to a matching
market exist. In other data sets, researchers can observe the identities of
unmatched agents. Data are available, for example, on potential merger
partners that do not end up undertaking mergers or on single people
in a marriage market (e.g., Choo and Siow 2006; Uetake and Watanabe
2016). When data on unmatched agents do exist, we can identify the dis-
tribution of match-specific unobservables E.
Here, X can contain separate numbers of downstream firms ND and

upstream firms NU. Let

E 5

e1,1 ⋯ e1,N D

⋮ ⋱ ⋮

eN U ,1 ⋯ eN U ,N D

0
BB@

1
CCA:

Use hu, 0i and h0, d i to denote an upstream firm and a downstream firm
that are not matched. An assignment A can be fhu1, 0i, hu2, d2i, h0, d2ig,
allowing single firms.
Assumption. E1. Each firm u or d is part of exactly one match or is

unmatched in each feasible assignment A.
We do not require match-specific characteristics zu,0 and z 0,d for un-

matched firms; they can be included in X if present. The data-generating
process is still (3). One difference is that a competitive equilibrium as-
signment needs to satisfy individual rationality: each nonsingleton real-
ized match has production greater than zero.
Theorem 3. Let E1 hold and let A2–A5 hold conditional on X. Then

the distribution GðE jX Þ is identified.
The proof shows that the distribution GðE jX Þ can be traced using the

probability that all agents are unmatched, conditional on Z. The individ-
ual rationality decision to be single identifies GðE jX Þ while the sorting of
matched firms to other matched firms identifies only F ðBjX Þ. Using an
individual rationality condition is more similar to the utility maximiza-
tion assumptions used in the identification of single-agent discrete choice
models and discrete Nash games (e.g., Lewbel 2000; Berry and Tamer
2007; Matzkin 2007; Berry and Haile 2016).

VI. Many-to-Many Matching

We now extend the previous results to many-to-many, two-sided match-
ing. Consider a two-sided matching game in which upstream firm u
canmake a quota of qu possible matches and downstream firm d canmake
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qd possible matches. The researcher has data on the long vector Q 5
ððquÞu∈N , ðqdÞd∈N Þ, and the quotas can vary across firms in the same market
and across markets. The previous case of one-to-one matching is qu 5
qd 5 1 for all firms. Leaving a quota slot unfilled gives production of zero
for that slot. The number of upstream firms NU may differ from the num-
ber of downstream firms ND.
Let the production function for an individual match still be (1) and let

the production of the matches of the upstream firm u with the pair of
downstream firms d1 and d2 be equal to

zu,d1
1 eu,d1

1 zu,d2
1 eu,d2

:

This implies additive separability in the production of multiple matches
involving the same firm (Crawford and Knoer 1981; Sotomayor 1992,
1999). As in the one-to-one case, a competitive equilibrium assignment
is proven to exist, to be efficient, and to be unique with probability one.
Redefine the following objects to allow N U ≠ N D:

E 5

e1,1 ⋯ e1,N D

⋮ ⋱ ⋮

eN U ,1 ⋯ eN U ,N D

0
BB@

1
CCA,

Z 5

z1,1 ⋯ z1,N D

⋮ ⋱ ⋮

zN U ,1 ⋯ zN U ,N D

0
BB@

1
CCA,

B 5

b2,2 ⋯ b2,N D

⋮ ⋱ ⋮

bNU ,2 ⋯ bNU ,N D

0
BB@

1
CCA:

Extending the model in Section II.H, let G 5 ðgu,dÞu∈NU ,d∈N D be the matrix
of homogeneous parameters, if present.
Say first that the number of firms, the quotas, and the production

functions are such that all firms make a number of matches equal to
their quotas: there are no unused quota slots in equilibrium. Leaving
no unused quota is feasible if

o
N U

u51

qu 5 o
N D

d51

qd :

In this case, every mathematical argument for the baseline model in Sec-
tion II and many of the subsequent models extends to many-to-many
matching. In particular, the distribution of unobserved complementari-
ties F ðBjX Þ is identified using the sorting patterns in the data. Likewise,
if unmatched firms are in the data and so quota slots can be left unused,
the same analysis as in Section V applies.
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Assumption.

F1. oN U

u51qu 5 oN D

d51qd , and each firm u or dhas a number ofmatches
exactly equal to its quota, qu or qd, in each feasible assign-
ment A.

F2. The limiting data are on (A, Z, X, Q ).
F3. The randommatrix Z is independent of the randommatrix E

conditional on X, Q.
F4. The support of the random matrix Z conditional on X, Q is

RNU �N D

.
F5a. The firm indices u and d have common meaning across mar-

kets conditional on X, Q or the random matrix E has a distri-
bution that is exchangeable in agent indices conditional on
X, Q.

F5b. The firm indices u and d have common meaning across mar-
kets conditional on X, Q.

F6. Each firm u or d has a number of matches less than or equal
to its quota, qu or qd, in each feasible assignment A. Firms can
be unmatched.

Corollary 3. Consider the many-to-many matching model.

1. If F1–F4 and F5a hold, the distribution F ðBjX ,Q Þ is iden-
tified in a model without the fixed matrix of parameters G 5
ðgu,dÞu∈N U ,d∈N D .

2. If F1–F4, F5b, and B6 hold, the distribution F ðBjX ,Q Þ and the
fixed matrix of parameters G 5 ðgu,dÞu∈NU ,d∈N D are identified.

3. If F2–F4, F5a, and F6 hold, the distribution GðE jX ,Q Þ is iden-
tified in a model without the fixed matrix of parameters G 5
ðgu,dÞu∈N U ,d∈N D .

The proof is omitted as it just checks previous mathematical arguments
to see that properties unique to one-to-one matching are not used.
Corollary 3.3 can be extended to a simple version of matching with

trades (Hatfield et al. 2013). Agents engage in trades q from some finite
set Q. The production of a trade q between buyer i and seller j is

zq 1 eq: (15)

Define the vectors �Z 5 ðzqÞq∈Q and �E 5 ðeqÞq∈Q. Let A be the set of trades
that occur in a competitive equilibrium. A trade q indexes the name of
the buyer and the name of the seller and can specify other aspects, such
as the quality or other specifications of the goods in question. In a labor
market, trades could specify benefits such as health care plans and vaca-
tion time. In venture capital, a trade could specify the number of board
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seats a start-up gives a venture capitalist. Trades generalize our previous
notion of a match. We require data on all aspects defining the trade q; if
quality is part of a trade, then the qualities for all trades in the set Qmust
be measured. The price of trade q is pq, although, as before, we study
identification when prices are not observed in the data. Prices play the
same role as transfers in the earlier matching models. Firms are not nec-
essarily divided into buyers and sellers ex ante; a firm can be a buyer on
some trades and a seller on other trades. In a model of mergers, a firm is
not ex ante either a target or acquirer; these roles arise endogenously as
part of a competitive equilibrium outcome. Two-sided, many-to-many
matching is a strict special case of trading networks in which the profits
of an upstream firm undertaking trades as a buyer are 2∞ and, likewise,
the profits of a downstream making trades as a seller are 2∞.
Assumption.

G1. All trades q with positive production occur in an assignment A.
G2. The limiting data are on triples (A, �Z , X).
G3. The random vector �Z is independent of the random vector �E

conditional on X.
G4. The support of the random vector �Z conditional on X is RjQj.
G5. Either the trade index q has common meaning across markets

conditional onX or the random vector �E has a distribution that
is exchangeable in trade indices conditional on X.

Proposition 7. If G1–G5 hold, then Gð�E jX Þ is identified.
The proof is similar to the proof of theorem 3. Identification also

holds if we introduce quotas to matching with trades, as in corollary 3.3.

VII. More General Matching with Trades

We now consider matching with trades in which firms have profit func-
tions defined over portfolios of trades. Let Qi ⊂ Q be the set of trades
in which i is either a buyer or a seller. The individual profit of a firm i un-
dertaking the trades Wi ⊆ Qi at prices pq for q ∈ Q is

u i,Wið Þ 1 o
q∈Wi →

pq 2 o
q∈W→ i

pq, (16)

where the set Wi→ is the trades in Wi in which i is the seller and W→i is the
trades in Wi in which i is the buyer. Hatfield et al. (2013) prove that a
competitive equilibrium assignment exists and is efficient (and there-
fore unique with probability one) under a condition on preferences
called substitutes. A companion paper shows that the substitutes condi-
tion is equivalent to the indirect utility (profit) version of the direct util-
ity (profit) in (16) being submodular for all vectors of prices, pq for q ∈ Q

(Hatfield et al. 2018, theorem 6). See the cited paper for a definition of
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submodularity. Submodularity of the indirect utility function is restric-
tive for many empirical applications. However, submodularity is a restric-
tion only when the profit from a set of trades is not additively separable
across the trades. Therefore, the underlying direct utility firm profits jus-
tifying proposition 7 imply that the corresponding indirect utility func-
tions are submodular.
For all firms i and trades wi ⊆ Qi let the pretransfer profit (or valuation) be

u i,Wið Þ 5 zi,Wi
1 ei,Wi

,

where zi,Wi
is an observable specific to firm i and the set of tradesWi and ei,Wi

is an unobservable specific to firm i and the set of trades Wi. Define Ẑ 5
ðzi,Wi

Þi∈N ,Wi ⊆ Qi
and Ê 5 ðei,Wi

Þi∈N ,Wi ⊆ Qi
.

Assumption.

H1. Each firm i makes the trades Wi, which can include not making
any trades.

H2. The limiting data are on triples (A, Ẑ , X).
H3. The random vector Ẑ is independent of the random vector Ê

conditional on X.
H4. The support of the random vector2Ẑ conditional on X is a weak

superset of the support of Ê .
H5. The supports of Ê and Ẑ imply that the corresponding indirect

utility functions are submodular for all players for all realizations
of Ê and Ẑ .

H6. Either the trade index q and the agent index i have common
meaning across markets conditional on X or the random vector
Ê has a distribution that is exchangeable in agent and trade in-
dices conditional on X.

Under H4, if the support of Ê is a product space, then the support of
2Ẑ must contain that product space. This is in principle a strong require-
ment because zi,Wi

varies by the identity of the firm i and set of trades Wi.
If restrictions are placed on how ei,Wi

varies across i and Wi, then corre-
spondingly less variation is needed in zi,Wi

. On H5, we leave to other work
the question of how to enforce submodularity in empirical applications.
Say that the profit frommakingno trades is zero and that the researcher

observes data on firms that make no trades. Then the following identifi-
cation result holds.
Theorem 4. Let H1–H6 hold. The function GðÊ ∣ X Þ is upper

bounded by an identified function �GðÊ ∣ X Þ. The function �GðÊ ∣ X Þ <
1 if, for each X and Ẑ , there exists Ê with positive probability where
trades occur.
We can identify a function �GðÊ ∣ X Þ such that GðÊ ∣ X Þ ≤ �GðÊ ∣ X Þ

for all unobservables Ê and conditioning observables X. A distribution
function reports a probability, so the trivial bound �GðÊ ∣ X Þ 5 1 satisfies

unobserved heterogeneity in matching games 1365



this property. If some assignment other than the assignment with no
trades occurs with positive probability, then �GðÊ ∣ X Þ is a tighter bound
than the trivial bound of one. The bound is likely not sharp. Indeed, it is
possible �GðÊ ∣ X Þ is point identified and we do not know the proof.
The bound �GðÊ ∣ X Þ in the proof of theorem 4 is actually PrðA0jZ , X Þ

for some Z, where A0 is the assignment in which no trades are made. The
proof of theorem 4 extends the argument in the proofs of theorem 3
and proposition 7. In those proofs, an object like GðÊ ∣ X Þ itself and not
a bound equals PrðA0jZ , X Þ. The reason is that the unobservables eu,d in
theorem 3 and eq in proposition 7 correspond to the production of a
match or trade, which is the sum of profits of the two firms for the match
or trade. In theorem 4, the unobservables ei,Wi

correspond to the profit of
an individual firm i and not the production of all firms in the trades. The
individual profit functions are not additively separable across individual
trades, leaving no role for the concept of the production of a trade.

VIII. Conclusion

It has been an open question whether data on whomatches with whom as
well as match or agent characteristics are enough to identify distributions
of unobservables in transferable utility matching games. Using data on
only matched firms, one can identify distributions of what we call unob-
served complementarities but not the underlying primitive distribution
of match-specific (or agent-specific) unobservables. The distribution of
complementarities is enough to compute differences in production levels
across assignments and therefore many counterfactual assignment prob-
abilities. We show that it is possible to identify heterogeneous-within-a-
market coefficients on the large supportmatch characteristics. The results
extend naturally to two-sided, many-to-many matching.
If the data contain unmatched firms, the individual rationality deci-

sion to not be unmatched helps identify the distribution of primitively
specified unobserved match characteristics, not just the distribution of
unobserved complementarities. We partially extend this result to the
fairly general case of matching with trades.

Appendix

Proofs

A. Proof of Lemma 1

Fix a realization E* of the primitive unobservable, E. Using the elements of E *

and the large support on Z, set z*u,d 5 2e*u,d . Then sðA; E*, Z*Þ 5 oh u,d i∈Aðe*u,d 1
z*u,dÞ 5 0 for all assignments A.

The definition of the joint CDF H ð~SÞ at some vector of evaluation ~S* formed
from E * is
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H ð~S*Þ 5 PrEð~s A; Eð Þ ≤ ~sðA; E*Þ, 8 A ≠ A1Þ:
Here, each element of the vector ~S* is ~sðA; E*Þ for some A ≠ A1. Identification of
H follows from

H ð~S*Þ 5 PrE ~s A; Eð Þ ≤ ~s A; E*ð Þ, 8 A ≠ A1ð Þ
5 PrE s A; E , Z*ð Þ 2 s A1; E , Z*ð Þ ≤ s A; E*, Z*ð Þ2 s A1; E*, Z*ð Þ, 8 A ≠ A1ð Þ
5 PrE s A; E , Z*ð Þ 2 s A1; E , Z*ð Þ ≤ 0, 8 A ≠ A1ð Þ
5 PrE s A; E , Z*ð Þ ≤ s A1; E , Z*ð Þ, 8 A ≠ A1ð Þ
5 Pr A1 ∣ Z*ð Þ:

Here the first line is the definition of the joint CDF, the second line adds the ob-
served production of assignments A and A1 to both sides of the inequality, the
third line uses sðA; E*, Z*Þ 5 0 for all A, the fourth line moves s(A1, E, Z*) to
the right side of the inequality for each A, and the fifth line uses the fact that as-
signment A1 is a competitive equilibrium assignment whenever A1 has a higher
total production than all other assignments A.

B. Proof of Proposition 2

1. First Part of Proposition 2

For the first part of the proposition, we need to show that every element in C is a
linear combination of elements in B. Note that any unobserved complementarity
of the form c1,d1,u,d2

is equal to the difference of two elements of B:

c1,d1,u,d2
5 e1,d1

1 eu,d2
2 e1,d2

1 eu,d1
ð Þ

5 e1,1 1 eu,d2
2 e1,d2

1 eu,1ð Þ 2 ½e1,1 1 eu,d1
2 e1,d1

1 eu,1ð Þ�
5 bu,d2

2 bu,d1
:

Next, we represent an arbitrary unobserved complementarity cu1,d1,u2,d2
in terms of

unobserved complementarities of the form c1,d1,u,d2
:

cu1,d1,u2,d2
5 eu1,d1

1 eu2,d2
2 eu1,d2

1 eu2,d1
ð Þ

5 e1,d1
1 eu2,d2

2 e1,d2
1 eu2,d1

ð Þ 2 ½e1,d1
1 eu1,d2

2 e1,d2
1 eu1,d1

ð Þ�
5 c1,d1,u2,d2

2 c1,d1,u1,d2
:

Because we have shown that any unobserved complementarity of the form c1,d1,u,d2

is a difference of two elements in B, cu1,d1,u2,d2
can be written as the sums and dif-

ferences of elements in B.

2. Second Part of Proposition 2

For the second part of the proposition, we are given an F(B) and need to find a
G(E) such that G generates F by the change of variables given by the definition
of the unobserved complementarities in B, (8). Note that every element bu2,d2

of B
contains a unique element eu2,d2

of E. Place a distribution G on E ’s such that e1,d 5
eu,1 5 0 for all u, d and the other elements of each E are such that eu,d 5 bu,d for
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some B in the support of F(B). If each E of G(E) has the same frequency as the
paired B in F(B), the distribution G(E) generates F(B).

3. Third Part of Proposition 2

Let pu be a permutation of upstream firm indices and pd a permutation of down-
stream firm indices. We wish to prove that B is exchangeable in agent indices if E
is exchangeable in agent indices. The matrix B is formed from E by a linear trans-
formation D, representing the formula (8) for each element of B. Dean and
Verducci (1990, condition 2, theorem 4) provide a sufficient (and necessary)
condition for a linear transformation to preserve exchangeability in all elements
of a random vector. If we vectorize the matrices B and E, the argument in the first
paragraph of the proof of theorem 4 of Dean and Verducci can be reproduced
for our definition of exchangeability in agent indices. We skip this step of repro-
ducing one direction of the proof of theorem 4 of Dean and Verducci for our
different notion of exchangeability in agent indices for conciseness.

The sufficiency condition fromDean and Verducci that we need to verify is that
for any permutation in agent indices of B, there exists a permutation of agent in-
dices in E that gives Bpu ,pd

through the linear transformation D. This condition is
satisfied for B and E. Given permutations of agent indices pu and pd themselves
giving Bpu ,pd

, the same permutations of agent indices give Epu ,pd
. It is clear that

Bpu ,pd
is related to Epu ,pd

through the linear transformation D by inspection of (8).

C. Proof of Theorem 1

1. First Part of Theorem 1

Using the definition of ~r ðA; BÞ gives
~r A; Bð Þ 5 o

hu,d i∈A
bu,d 2 o

hu,d i∈A1

bu,d

5 o
hu,d i∈A

½e1,1 1 eu,d 2 e1,d 1 eu,1ð Þ� 2 o
hu,d i∈A1

½e1,1 1 eu,d 2 e1,d 1 eu,1ð Þ�

5 o
hu,d i∈A

eu,d 2 o
hu,d i∈A1

eu,d 2 o
hu,d i∈A

e1,d 1 eu,1ð Þ 1 o
hu,d i∈A1

e1,d 1 eu,1ð Þ

5 o
hu,d i∈A

eu,d 2 o
hu,d i∈A1

eu,d

5 ~s A; Eð Þ,
where the fourth equality uses the fact that each firm is matched the same num-
ber of times (in one-to-one matching, exactly once) in both the assignments A
and A1 and the last equality is just the definition of ~sðA; EÞ in (2).

2. Second Part of Theorem 1

If B1 5 B2, then ~rðA; B1Þ 5 ~r ðA; B2Þ simply because (10) is a definition of a func-
tion of B. For the other direction, assume ~rðA; B1Þ 5 ~rðA; B2Þ for all A. Focus on a
particular scalar unobserved complementarity bu,d in B. We will show that bu,d can
be written as ~sðA2, EÞ 2 ~sðA3, EÞ for particular assignments A2 and A3. As the first
part of the theorem is that ~sðA; EÞ 5 ~r ðA; BÞ for any A and where B is formed
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from E, this implies that bu,d is the same in B1 and B2. Because bu,d was arbitrary,
B1 5 B2.

Let A2 be an assignment that contains the matches hu, d i and h1, 1i. Let A3 be
the same assignment as A2 except that A3 includes the matches h1, d i and hu, 1i
and does not include hu, d i and h1, 1i. Then

~s A2, Eð Þ 2 ~s A3, Eð Þ 5 e1,1 1 eu,d 2 eu,1 1 e1,dð Þ 5 bu,d :

By the above argument and because the match hu, d i was arbitrary, B1 5 B2.

3. Third Part of Theorem 1

The distribution H ð~SÞ is identified from lemma 1. The first part of theorem 1
shows that the change of variables from ~S to the vector of all ~r is one-to-one.
The second part of theorem 1 shows that the change of variables from the vector
of all ~r to the matrix of unobserved complementarities B is one-to-one. There-
fore, F(B) is identified.

D. Proof of Theorem 2

IfG is identified, then following a slightlymodified versionof theproof of lemma1
and the same argument as the proof of theorem 1.3 demonstrate that F is also
identified. So consider identifying G. Recall that the scale normalization is that
g1,1 5 ±1. We can easily identify the sign of g1,1. Consider some assignment A that
includes match h1, 1i. Then we can compare Z1 and Z2 that differ only in the
value of z1,1: z11,1 > z21,1. If PrðA ∣ Z1Þ > PrðA ∣ Z 2Þ, we conclude that g1,1 5 11,
and if PrðA ∣ Z1Þ < PrðA ∣ Z 2Þ, we conclude that g1,1 5 21. The main text rules
out the case in which any gu,d 5 0. In what follows, we focus on the case in which
the sign of every gu,d is identified and, in particular, g1,1 5 11. The case of g1,1 5
21 is symmetric.

We now show how to identify the arbitrary parameter g~u,~d . Consider assign-
ments A1 5 fh1, 1i, h~u, ~d i,…g and A2 5 fh1, ~d i, h~u, 1i,…g that are identical ex-
cept for the explicitly listed matches. In a proof shortcut borrowing an idea from
identification at infinity, let the matches not in A1 [ A2 correspond to zu,d’s where
gu,dzu,d 5 2∞, so we consider only Z ’s in which the total production of any assign-
ment other than A1 and A2 is 2∞ and hence PrðA1 ∣ ZÞ 1 PrðA2 ∣ ZÞ 5 1. Set
z1,~d 5 0 and z~u,1 5 0. Then A1 occurs whenever

z1,1 1 e1,1 1 g~u,~d z~u,~d 1 e~u,~d ≥ e1,~d 1 e~u,1,

or by (8), z1,1 1 g~u,~dz~u,~d 1 b~u,~d ≥ 0. This decision rule is equivalent to a decision
rule in a single-agent binary choice model. As b~u,~d is fully independent from
z1,1 and z~u,~d , we can apply the results on binary choice from Manski (1988) under
full independence and identify g~u,~d .

E. Proof of Proposition 6

Condition all arguments on X. We first argue that the equivalent of lemma 1
holds. Fix a realization ððe*u Þu∈N , ðe*d Þd∈N Þ of the agent-specific unobservables ~E .
Using the elements of ððe*u Þu∈N , ðe*d Þd∈N Þ and the large support on ððzuÞu∈N ,
ðzdÞd∈N Þ, set z*u 5 2e*u and z*d 5 e*d , the latter without a negative sign as the mul-
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tiplication of two negatives is positive. Then sðA; ~E*, ~Z*Þ 5 oh u,d i∈Aðe*u � e*d 1 z*u �
z*d Þ 5 0 for all assignments A. The rest of the proof is then identical to the cor-
responding portion of the proof of lemma 1, for the match-specific case.

The first two parts of theorem 1 do not refer to Z at all and do not impose any
restrictions on the E matrix. So they automatically apply to the less general case
in which eu,d 5 eu � ed . The main identification result, the third part of theorem 1,
then follows for the agent-specific case from the slight modification to the proof
of lemma 1 above and the first two parts of theorem 1.

F. Proof of Theorem 3

Condition on X. Let A0 denote the assignment in which no agents are matched.
By the normalization that being unmatched gives production zero, the sum of
unobserved production for the assignment A0 satisfies ~sðA0; EÞ 5 0 for all E.
Let E * be an arbitrary realization of the matrix of match-specific unobservables.
Let Z* 5 ðz*u,dÞu,d∈N be such that z*u,d 5 2e*u,d . Then sðA; Z*, E*Þ 5 0 for all A and
SðA0; Z*, EÞ 5 0 for any E. Thus for all A and all E ≤ E* elementwise, SðA; Z , EÞ ≤
0 5 SðA0; Z*, EÞ. Further, if any element of E is greater than the correspond-
ing element of E *, assignment A0 will not maximize s(A, Z *, E) and so A0 will
not be a competitive equilibrium assignment. Therefore, GðE*Þ 5 PrðE ≤
E* elementwise  ∣ E*Þ 5 PrðA0 ∣ Z*Þ.

G. Proof of Proposition 7

Condition on X. Let A0 denote the assignment (of trades) in which no trades are
made; then the sum of unobservables for this assignment is zero for all �E and �Z .
Let �E* be an arbitrary realization of �E , the vector of trade-specific unobservables.
Let �Z* be such that z*q 5 2e*q for all q ∈ Q. Define

s A; �E , �Zð Þ 5 o
q∈A

eq 1 zqð Þ

to be the total production from an assignment. Then sðA; �Z*, �E*Þ 5 0 for all A
and SðA0; �Z*, �EÞ 5 0 for any �E . Therefore, for all A and all �E ≤ �E* elementwise,
SðA; �Z , �EÞ ≤ 05 SðA0; �Z*, �EÞ. Therefore, Gð�E*Þ5 Prð�E ≤ �E* elementwise ∣ �E*Þ5
PrðA0 ∣ Z*Þ.

H. Proof of Theorem 4

Condition on X. Let A0 denote the assignment (of trades) in which no trades are
made; then the sum of unobservables for this assignment is zero for all Ê and Ẑ .
Let E * be an arbitrary realization of the array of unobservables. Let Ẑ* 5
ðz*i,Wi

Þi∈N ,Wi ⊆ Qi
be such that z*i,Wi

5 2e*i,Wi
for all i ∈ N , Wi ⊆ Qi . Define

s A, Ê , Ẑ
� �

5 o
i∈N

ei,WA
i
1 zi,WA

i
ð Þ,

where WA
i are the trades of i in A, to be the total profit or production from an

assignment. Then sðA; Ẑ*, Ê*Þ 5 0 for all A and SðA0; Ẑ*, ÊÞ 5 0 for any Ê .
Therefore, for all A and all Ê ≤ Ê* elementwise, SðA; Ẑ , ÊÞ ≤ 0 5 SðA0; Ẑ*, ÊÞ.
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Therefore, assignment A0 will occur whenever Ê ≤ Ê* elementwise. Can assign-
ment A0 occur for Ê not less than or equal (elementwise) to Ê*? For such an Ê ,
there is at least one (i, Wi) such that ei,Wi

> e*i,Wi
. In this case, the valuation u(i, Wi)

of i forWi at Ẑ*, ei,Wi
1 z*i,W 5 ei,Wi

2 e*i,Wi
is positive. However, it could still be that at

this Ê and Ẑ* a vector of prices for trades cannot be formed so that an assignment
of trades other than A0 is a competitive equilibrium assignment. So A0 can occur at
realizations of unobservables Ê not less than or equal (elementwise) to Ê*. There-
fore, GðÊ*Þ 5 PrÊðÊ ≤ Ê*Þ ≤ PrðA0 ∣ Ẑ*Þ. Define �GðÊ* ∣ X Þ 5 PrðA0 ∣ Ẑ*, X Þ.
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