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Annals of Economics and Statistics, Number 142, June 2021

A NOTE ON NONPARAMETRIC IDENTIFICATION OF DISTRIBUTIONS OF RANDOM
COEFFICIENTS IN MULTINOMIAL CHOICE MODELS

JEREMY T. FOX a

I prove the point identfication of the joint distribution of the vector of random coeffi-
cients and additive, good-specific errors in a multinomial choice model. The identifi-
cation theorem extends the binary choice results of Ichimura and Thompson (1998)
as well as Gautier and Kitamura (2013) from two to two or more choices.

JEL Codes: C14, C25, C35.
Keywords: Discrete Choice, Multinomial Choice, Random Coefficients, Demand.

1. INTRODUCTION

Two key papers on identifying the distribution of random coefficients and additive errors
in binary (two) choice have not been extended to multinomial (two or more, importantly
three or more) choice (Ichimura and Thompson, 1998; Gautier and Kitamura, 2013). Un-
der large support on choice-specific explanatory variables, one can always turn a multi-
nomial choice model with three or more goods into a binary choice model by setting the
explanatory variables for all but two goods to be minus infinity. This identification at in-
finity approach does not identify the joint distribution of all unobservables in the model
if there are unobservables that enter only the utilities of certain goods. Establishing the
identification of the joint distribution of random coefficients and additive unobservables
in the multinomial choice model is the point of this note.

The argument in this note might be considered an extension to multinomial choice of
the brief argument about identifying a distribution of random coefficients in binary choice
in Lewbel (2014, Section 8). Our identification proof uses the results on identifying dis-
tributions of random coefficients in seemingly unrelated regressions by Masten (2018). A
key step of our identification proof is also found in Berry and Haile (2016) and Fox and
Gandhi (2016).

There are some related papers on multinomial choice. Lewbel (2000) considers multi-
nomial choice in a semiparametric setting but does not explicitly identify a distribution of
random coefficients. Fox and Gandhi (2016) study the topic of this note: nonparametric
identification in multinomial choice models, where the example of a linear-in-random-
coefficients model is a special case of their analysis. However, Fox and Gandhi assume
that the distribution of random coefficients and additive errors takes on unknown finite
support in the appropriate real space. This note avoids the unknown finite support as-
sumption. Fox, Kim, Ryan, and Bajari (2012) nonparametrically identify a distribution of
random coefficients on continuous explanatory variables but rely on the additive, good-
specific unobservables having a known distribution such as the type I extreme value or
logit distribution. In this note, the joint distribution of the good-specific, additive unob-
servables is identified.

aRice University and NBER. jeremyfox@gmail.com
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2. MODEL

Consider a multinomial choice model with random coefficients. Let i index a consumer.
There are J inside goods and one outside good, called choice 0. The outside good has a
utility normalized to ui,0 = 0. The inside goods have utilities

ui,j = β′
ixi,j + εi,j,

where xi,j is a vector of observables for choice j and consumer i, βi is consumer i’s vector
of random coefficients on the explanatory variables, and εi,j is an additive unobservable
for choice j and consumer i. We do not impose that εi,j has mean zero and we do not
allow intercept terms in xi,j . Note that βi is common to all choices.

We impose the scale normalization that one element of the vector βi has the value ±1
for each i. This rules out that this coefficient can be zero. Let wi,j be the corresponding
scalar element of xi,j and let x̃i,j be all other elements of xi,j , so that xi,j = (wi,j, x̃i,j).
Then the utility to choice j can be rewritten as

ui,j = ±1wi,j + β̃′
ix̃i,j + εi,j,

where β̃i corresponds to the random coefficients on only the items in x̃i,j . We further im-
pose that the coefficient on wi,j is either +1 for all consumers i or is−1 for all consumers
i.

Let xi = (xi,1, . . . , xi,J),wi = (wi,1, . . . , wi,J), x̃i = (x̃i,1, . . . , x̃i,J) and εi = (εi,1, . . . , εi,J)
all be long vectors. Also, define γi = (βi, εi) as another long vector. Note that γi is a het-
erogeneous parameter vector, not a homogeneous parameter.

We consider i.i.d. observations on (yi, xi), where yi is the choice that maximizes ui,j
over {0, 1, . . . , J}. Given this, we can nonparametrically identify conditional choice prob-
abilities Pr (yi = j | xi).

The sign of the coefficient on wi,j is learned in identification; a positive coefficient on
wi,j corresponds to higher values of wi,j increasing the choice probability of good j, other
explanatory variables held constant. We make this formal in the proof of identification. As
the choice probability of good j is monotone inwi,j , a failure of monotonicity in estimated
choice probabilities means that the model is rejected by the data. Researchers can test for
this monotonicity property before estimating the model parameters.

We assume that xi is independent of γi. In principle, one can discuss endogeneity with
various methods in the literature, such as Lewbel (2000), although this paper does not
discuss endogeneity. In what follows, we drop the i subscript.

The only unknown object in this model is F (γ), the joint distribution of the additive
unobservables ε and the random coefficients β. Because we will not restrict the support
of each εj and β, a sufficient condition for identification of F , as shown in this note, will
be as follows.

ASSUMPTION The support of x, reordered as x = (w, x̃) is RJ × X̃ , where the support
of w is the large support RJ and the support of the vector x̃ is X̃ , a closed, weak superset
of an open subset of the real space Rdim(x̃).1

1Often the mathematical term support is defined to be a closed set.
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X̃ = Rdim(x̃) is allowed but certainly not required. Having support on the product space
RJ for w and a superset of an open subset of Rdim(x̃) for x̃ rules out the entire vector x
containing polynomial terms of other elements in x, interactions of two elements also in
x, or the same element of x entering the utility of different goods. Continuous support on
all elements in x rules out discrete x. Large support is needed for w but not for x̃. The
support assumptions are discussed in more detail below.

If consumer demographics zi are in the data, one approach is for the researcher to simply
condition on zi and identify F (γ | zi) separately for each demographic group zi. This
requires the support of x to satisfy the above restrictions conditional on zi.

3. IDENTIFICATION

We are now ready to state the main identification theorem.

THEOREM 1 If i) the support of x is as stated in the formal assumption, ii) γ is inde-
pendent of x, iii) γ has finite absolute moments, and iv) the distribution of γ is uniquely
determined by its moments, then F (γ) is identified.

PROOF: The argument works in three steps. First, we identify the sign of the coeffi-
cient on the explanatory variables wj that form the scale normalization. Second, we use
w to trace out the CDF of utility values (other than from w) conditional on the other ex-
planatory variables in x̃. Third, we cite work by Masten (2018, Theorem 1) on seemingly
unrelated regressions with random coefficients to identify the distribution of the random
coefficients and additive unobservables.

First, we identify the sign of the coefficient on each wj , which has been normalized
to ±1. We observe conditional choice probabilities Pr (y = j | x) and the vector w is a
subvector of x. If Pr (y = j | x) is monotonically increasing in wj for some j, then the
coefficient on each wj is +1. If it is decreasing, then the coefficient on each wj is −1. Let
w̄j = +wj or w̄j = −wj , as appropriate based on the sign of the coefficient on wj . Let
w̄ = (w̄1, . . . , w̄J).

Second, we use arguments motivated by Lewbel (2000) to trace a CDF of utility values
(other than from w) conditional on the explanatory variables in x̃. Define

ũj = β̃′x̃j + εj

and ũ = (ũ1, . . . , ũJ). Let the CDF of the vector ũ conditional on the vector x̃ be
Gũ (ũ | x̃). Let ũ? be a point of evaluation of the CDF. Then, for arbitrary x̃,

Gũ (ũ? | x̃) = Pr (ũ ≤ ũ? | x̃) = Pr (ũ ≤ −w̄ | −w̄ = ũ?, x̃) = Pr (y = 0 | −w̄ = ũ?, x̃) .

All the lower case letters in the above display equation are vectors, except for y. This
argument identifies the CDF Gũ (ũ? | x̃) at all points of evaluation because w has full
support on RJ . This argument is not new. It appears in Berry and Haile (2016) and Fox
and Gandhi (2016).

Third, we use Masten (2018, Theorem 1) to identify the distribution of γ itself. From
the previous step we observe Gũ (ũ | x̃) for x̃ varying in an open set, which is equivalent
to the distribution that Masten (2018, Theorem 1) maintains is observed in a seemingly
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unrelated regression model.2 Therefore, F (γ) is identified for any J . Q.E.D.

The proof uses Masten (2018, Theorem 1). This theorem states conditions for the iden-
tification of a distribution of random coefficients in a system of seemingly unrelated re-
gression equations of the form ũj = β̃′x̃j + εj for equation j. The conditions in the
theorem include that γ = (β, ε) is independent of x, γ has finite absolute moments, and
the distribution of γ is uniquely determined by its moments.

4. DISCUSSION

This note uses large support for w and continuous but possibly bounded support for
x̃. Both assumptions are prevalent in the previous literature. As the following discussion
indicates, the large support forw originates from the discrete choice aspect of the problem,
as also found in the binary choice models of Lewbel (2000), Ichimura and Thompson
(1998) and Gautier and Kitamura (2013). The continuous but possibly bounded support
for x̃ originates in the random coefficients aspect of the problem, as in Ichimura and
Thompson (1998), Gautier and Kitamura (2013) and Masten (2018), as well as earlier
work on regression models cited by Masten (2018).

4.1. Discussion of Large Support for w

This note’s identification argument relies heavily on large support of w, meaning w has
support RJ . The argument does not use identification at infinity. In multinomial choice,
we can precisely define identification at infinity to mean a step of an identification proof
that sets wj = −∞ for J − 1 inside goods and uses an analysis from binary choice on the
resulting pair of an inside good and the outside good. One can inspect the identification
proof to see that this type of argument is not used. Indeed, the second step of the proof is
explicitly incompatible with identification at infinity, as the vector w is used over its full
support RJ .

Some version of a large support condition on w, while not particularly attractive, is
necessary to achieve point identification. Consider the special case of our model where
there is one inside good (J = 1), one outside good and no x̃. This is binary choice, which
has been extensively studied in the literature. Then the utility of good 1 is

u1 = ±1w1 + ε1

and the utility of good 0 is still u0 = 0. We can identify the sign of the common coefficient
on w1 by seeing whether Pr (y = 1 | w1) is monotonically increasing or decreasing in the
scalar w1. Let w̄1 = +w1 or w̄1 = −w1, as appropriate. In this example, γ = ε1. We can
identify the distribution Fε (ε1) at the point of evaluation ε?1 as follows

Fε (ε?1) = Pr (ε1 ≤ ε?1) = Pr (ε1 ≤ −w̄1 | −w̄1 = ε?1) = Pr (y = 0 | −w̄1 = ε?1) .

If ε takes on support on R, then this argument shows that w̄1 must also take on support on
all of R to identify Fε (ε1) over its entire support. As Pr (y = 0 | w̄1) + Pr (y = 1 | w̄1) =

2Masten (2018, Theorem 1) directly applies to a model with a good-specific vector of random coefficients
βj for each inside good j, in addition to the good-specific additive error εj . The typical restriction is used
in this paper: βj1 = βj2 for all inside goods j1, j2. This is a special case of Masten (2018, Theorem 1).
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1, all available data on conditional choice probabilities is used in the identification argu-
ment. This binary choice example is a special case of our model, so it shows that some
large support is necessary for point identification. If the large support condition on w1

does not hold, then Fε (ε1) is point identified for a subset of its values.
Keeping the example of binary choice but adding back x̃ so that u1 = ±1w1+ β̃′x̃1+ε1,

Magnac and Maurin (2007) show that E
[
β̃
]

is point identified with possibly bounded
support for w1 under a tail symmetry condition on Fε. The argument using tail symmetry
to identify E

[
β̃
]

in Magnac and Maurin (2007) has not been extended to multinomial
choice.

Even if this extension to three or more choices occurred, this would not allow the iden-
tification result for seemingly unrelated regression models with random coefficients in
Masten (2018, Theorem 1) to be used to identify the higher moments of the random co-
efficient distribution, as in the proof of the theorem above. Masten’s result for regression
models requires point identification of the joint distribution of the independent and de-
pendent variables. In the proof of the theorem above, the regression model in the proof
for inside good 1 is ũ1 = β̃′x̃1 + ε1. If w1 has bounded support, then the CDF of the inside
good utility ũ1 conditional on the vector x̃, Gũ1 (ũ1 | x̃1), will be identified over a sub-
set of values ũ. The deeper mathematical tool behind the identification results in Masten
(2018) as well as Ichimura and Thompson (1998) and Gautier and Kitamura (2013) is the
well-known device of Cramér and Wold (1936). Using the Cramér and Wold device for
identification requires the joint distribution of the independent and dependent variables
and extending this device to the case where the CDF of the dependent variable condi-
tional on the independent variables is identified at only a subset of dependent variable
values is an ambitious mathematical task outside the scope of this note.

4.2. Discussion of Continuous Support for w and x̃

Consider the previous binary choice example of the outside good and one inside good
with utility u1 = ±1w1 + β̃′x̃1 + ε1. The analysis in this note requires both w1 and
x̃1 to have continuous support. If w1 has large and continuous support and only x̃1 has
finite support, the argument in Lewbel (2000) still identifies the conditional distribution
Gũ1 (ũ1 | x̃1) and E

[
β̃
]
. However, the results in Masten (2018) and earlier papers he

cites do not show point identification of the higher order moments of γ =
(
β̃, ε1

)
, as

those results rely on x̃1 having support on a closed superset of an open subset of the real
space Rdim(x̃1).

If instead it is w1 that has finite support in the example of binary choice, then Magnac
and Maurin (2008) show thatE

[
β̃
]

is only set identified. Nothing is known about identifi-

cation of the higher order moments of γ =
(
β̃, ε1

)
. Point identification of the distribution

of γ would seemingly require a version of the Cramér and Wold (1936) device to apply to
discrete covariates.

Return to multinomial choice. Say two scalar elements a1 and a2 of the long vector
x̃ exhibit power dependence if a1 = al2 for a positive integer l. Then the statement of
non-identification for power dependence in Masten (2018, Theorem 1) combined with
the proof steps above imply that F (γ) is not point identified in multinomial choice.
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