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This appendix contains three sets of results. In Section B, we include some theoretical tools we

use to prove Lemma 1 in the paper: Topkis’s theorem and stochastic dominance. In Section

C, we show by example the key role of exclusion restrictions in our analysis. In Section D, we

extend our identification results to the case of three or more goods or players.

B Monotone Comparative Statics

The proof of Lemma 1 relies on Topkis’ theorem and the concept of stochastic dominance.

Topkis’ theorem (Topkis 1998): Let f (a1, a2, x) : A1 × A2 × R → R, where A1 and A2

are finite ordered sets. Assume that f (a1, a2, x) (i) is supermodular in (a1, a2) and that (ii)

has increasing differences in (a1, x) and (a2, x) . Then arg max {f (a1, a2, x) | (a1, a2) ∈ A1 ×A2}
increases in x with respect to the strong set order.1 (According to this order, we write A ≥S B
if for every a ∈ A and b ∈ B, we have that a ∨ b ∈ A and a ∧ b ∈ B.)

∗Jeremy T. Fox, e-mail: jeremyfox@gmail.com.
†Natalia Lazzati, e-mail: nlazzati@ucsc.edu.
1For any two elements a, a′ ∈ A1 × A2 we write a ∨ a′ (a ∧ a′) for the least upper bound (greatest lower

bound). We say f (a1, a2, x) is supermodular in (a1, a2) if, for all a, a′ ∈ A1 ×A2,

f (a ∨ a′, x) + f (a ∧ a′, x) ≥ f (a, x) + f (a′, x) .

We say f (a1, a2, x) has increasing differences in (a1, x) if, for all a′1 > a1 and x′ > x,

f (a′1, a2, x
′)− f (a1, a2, x

′) ≥ f (a′1, a2, x)− f (a1, a2, x) .
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The concept of first order (or standard) stochastic dominance (FOSD) is based on upper

sets. Let us consider (Ω,≥), where Ω is a set and ≥ defines a partial order on it. A subset

U ⊂ Ω is an upper set if and only if x ∈ U and x′ ≥ x imply x′ ∈ U.

First Order Stochastic Dominance: Let X ′, X ∈ Rn be two random vectors. We say X ′ is

higher than X with respect to first order stochastic dominance if, for all upper sets U ⊂ Rn,

Pr (X ′ ∈ U) ≥ Pr (X ∈ U) .

C Non-Identification Without Exclusion Restrictions

We show using a simple example that we cannot recover the joint distribution of unobservables

F (ε1, ε2) without the exclusion restrictions, captured by the roles of Z1 and Z2 in

U (a,W,Z, ε, η) =
∑
i=1,2

(ui (W ) + Zi + εi) · ai + η · v (W ) · a1 · a2. (1)

To this end, assume that Z1 = Z2 = Z, where Z is a scalar random variable. Thus Z is not an

excluded variable.

We focus on a simpler version of our model. Specifically, we drop W and assume both no

interaction effects and zero homogeneous standalone payoffs. That is, the researcher knows

that η · v = 0, u1 = 0 and u2 = 0. Because η · v = 0, the distribution of η is not identified and

indeed is not an interesting object to recover. If F (ε1, ε2) is not identified under these strong

conditions, then it is not identified if we allow for v, u1 and u2 to differ from zero. Under these

conditions, the choice probabilities simplify to

Pr ((1, 1) | z) = Pr (ε1 ≥ −z, ε2 ≥ −z | z)

Pr ((0, 0) | z) = Pr (ε1 ≤ −z, ε2 ≤ −z | z)

Pr ((1, 0) | z) = Pr (ε1 ≥ −z, ε2 ≤ −z | z)

Pr ((0, 1) | z) = Pr (ε1 ≤ −z, ε2 ≥ −z | z)

In this case, choice probabilities in the data only reveal the probability that the unobservables

(ε1, ε2) belong to rectangles with the common vertex (−z,−z). Note that if Z has large support,

then the marginal distributions of ε1 and ε2 are immediately identified by treating the decisions

to buy items 1 and 2 as separate binary choice problems (Manski 1988). This approach is
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possible as we assumed η · v is 0. Because the marginal distributions are identified, the non-

identification of F (ε1, ε2) must arise from the copula linking the two marginals to create the

joint distribution F (ε1, ε2) —which exists by Sklar’s Theorem.

We show the non-identification of F (ε1, ε2) by describing two different joint distributions,

with the same marginals, that give the same choice probabilities. Let F 1 (ε1, ε2) be the CDF

of a uniform distribution on [−1, 1]× [−1, 1], which has a pdf of 1/4 on [−1, 1]× [−1, 1]. The

choice probabilities for each z ∈ [−1, 1] sum up to 1 and are given by

Pr ((1, 1) | z) = Pr (ε1 ≥ −z, ε2 ≥ −z | z) = (1 + z) · (1 + z) · 1

4

Pr ((0, 0) | z) = Pr (ε1 ≤ −z, ε2 ≤ −z | z) = (1− z) · (1− z) · 1

4

Pr ((1, 0) | z) = Pr (ε1 ≥ −z, ε2 ≤ −z | z) = (1 + z) · (1− z) · 1

4

Pr ((0, 1) | z) = Pr (ε1 ≤ −z, ε2 ≥ −z | z) = (1− z) · (1 + z) · 1

4
.

Let us next construct F 2 (ε1, ε2) from F 1 (ε1, ε2) by shifting mass uniformly from each half-

quadrant triangle to the next one clockwise, so that, under F 2 (ε1, ε2),

Pr (ε2 ≥ ε1, 0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1) = 0 and Pr (ε2 ≤ ε1, 0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1) = 1/4

Pr (−ε2 ≤ ε1, 0 ≤ ε1 ≤ 1,−1 ≤ ε2 ≤ 0) = 0 and Pr (−ε2 ≥ ε1, 0 ≤ ε1 ≤ 1,−1 ≤ ε2 ≤ 0) = 1/4

Pr (−ε1 ≤ −ε2,−1 ≤ ε1 ≤ 0,−1 ≤ ε2 ≤ 0) = 0 and Pr (−ε1 ≥ −ε2,−1 ≤ ε1 ≤ 0,−1 ≤ ε2 ≤ 0) = 1/4

Pr (−ε1 ≥ ε2,−1 ≤ ε1 ≤ 0, 0 ≤ ε2 ≤ 1) = 0 and Pr (−ε1 ≤ ε2,−1 ≤ ε1 ≤ 0, 0 ≤ ε2 ≤ 1) = 1/4.

Because the shift is uniform, the pdf of (ε1, ε2) in the region of positive probability is 1/2.

We next show that, while F 2 (ε1, ε2) differs from F 1 (ε1, ε2), they generate the same choice

probabilities in the data; a similar argument can be used to show they share the same marginals.

The choice probabilities utilize the formula for the area of a right triangle, 1
2

times base times

height. The choice probabilities under F 2 (ε1, ε2) if z ≤ 0 (or −z ≥ 0) are

Pr ((1, 1) | z) = Pr (ε1 ≥ −z, ε2 ≥ −z | z) =
(1 + z) · (1 + z)

2
· 1

2
= (1 + z) · (1 + z) · 1

4

Pr ((0, 0) | z) = Pr (ε1 ≤ −z, ε2 ≤ −z | z) =

1

4
+

(−z) · (−z)

2
· 1
2

+ (1 + z) · (−z) · 1
2

+
(−z) · (−z)

2
· 1
2

+
(−z) · (−z)

2
· 1
2

= (1− z) · (1− z) · 1
4
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Pr ((1, 0) | z) = Pr (ε1 ≥ −z, ε2 ≤ −z | z) = (1 + z)·(−z)·1
2

+
(1 + z) · (1 + z)

2
·1
2

= (1 + z)·(1− z)·1
4

Pr ((0, 1) | z) = Pr (ε1 ≤ −z, ε2 ≥ −z | z) = (1 + z)·(−z)·1
2

+
(1 + z) · (1 + z)

2
·1
2

= (1− z)·(1 + z)·1
4
.

The algebra for the case where z ≥ 0 (or −z ≤ 0) is similar, so we omit it. Since two different

CDF’s F 1 (ε1, ε2) and F 2 (ε1, ε2) generate the same choice probabilities for all z, the joint

distribution of ε1, ε2 cannot be uniquely recovered from the data.

D Three or More Goods and Players

D.1 Identification Results for a General Model

Consider an agent that faces N = {1, 2, ..., n} binary choice variables that are not mutually

exclusive. Thus, her choice set is {0, 1}n. We define a = (ai)i≤n.

If the agent selects only variable i then her payoff is ui (W ) + Zi + εi, where W ∈ Rk is

a vector of explanatory variables and ε = (εi)i≤n ∈ Rn indicates a vector of random terms

distributed according to Fε|W,Z that is observed by the agent but not by the econometrician.

We define Z = (Zi)i≤n, where Zi is a scalar for i = 1, 2, ..., n. As before, Z represents the

excluded variables. We write S (a) = {i ∈ N : ai = 1} for the set of variables that are actually

selected if vector a is chosen. The agent selects the action profile a to maximize her utility

U (a,W,Z, ε) =
∑

i≤n
(ui (W ) + Zi + εi) · ai + v (S (a) ,W ) , (2)

where v (S (a) ,W ) is the interaction effect between the selected variables. This specification

allows the interaction term to vary with the items selected. We normalize v (S (a) ,W ) so that

it is 0 when |S (a)| < 2 and let the overall utility be 0 if a = (0, . . . , 0) is chosen.

Our purpose is to identify
(
(ui)i≤n , v, Fε|W,Z

)
from available choice data Pr (a | w, z). We

next provide the set of identifying restrictions. Let Z−i be all excluded explanatory variables

other than the one for the binary variable i.

B1: Zi | W,Z−i has support on all R for i = 1, 2, ..., n.

B2: (i) Fε|W,Z = Fε|W and (ii) E (ε | W ) =(0, 0, ..., 0).

B3: ε | W has an everywhere positive Lebesgue density on its support.

B4: For each W = w, there exists a known vector âw ∈ {0, 1}n with the following property.
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For all z and ε, U (a, w, z, ε) is maximized at âw if U
(
âwi , â

w
−i, w, z, ε

)
≥ U

(
ai, â

w
−i, w, z, ε

)
for all i ∈ N , where ai = 1− âwi .

We do not allow for heterogeneity in the interaction terms in the multiple binary variables

model. In addition, we need to add B4. This assumption requires the existence of a vector of

choices (known by the econometrician) such that if the vector is a local maximizer, then it is a

global maximizer as well. We provide sufficient conditions for B4 below.

Theorem D.1. Under B1–4,
(
(ui (·))i≤n , v (·) , Fε|W

)
is identified.

The proof of Theorem D.1, in Section D.4 below, first uses condition B4 to trace Fε|W

using variation in Z. We then use the known Fε|W to show —via contradiction— that there

exist realizations of Z where different values of
(
(ui)i≤n , v

)
lead to different bundle choice

probabilities.

The next four conditions are sufficient for assumption B4 to hold.

Two Binary Variables: B4 always holds if there are two choice variables, so that B4 in this

case is not stronger than the analysis in the main text. If B1–3 are satisfied, then, by Lemma

1, the sign of v (w) = v ((1, 2) , w) is identified for each W = w. It can be easily shown that

B4 holds with âw = (1, 0) or âw = (0, 1) when v (w) ≥ 0 and âw = (0, 0) or âw = (1, 1) when

v (w) ≤ 0.

Negative Interaction Effects: The second sufficient condition relies on the items being

substitutes. This holds if U (a, w, z, ε) has the negative single-crossing property in (ai; a−i) for

all i ∈ N . That is, if, for all a′−i > a−i (in the coordinatewise order) and w, z, ε, we have

U (ai = 1, a−i, w, z, ε)− U (ai = 0, a−i, w, z, ε) ≤ (<) 0 =⇒

U
(
ai = 1, a′−i, w, z, ε

)
− U

(
ai = 0, a′−i, w, z, ε

)
≤ (<) 0.

In this case, B4 holds with âw = (0, 0, ..., 0) for each w.

Positive or Mixed Interaction Effects: The third sufficient condition applies to the case

where the binary variables are all complements or the interaction effects have different signs.

Though this result extends to the case of an arbitrary (finite) number of binary choice variables,

we present the sufficient condition for the case of three to simplify the exposition. In this case,

B4 holds with âw = (1, 0, 0) for each W = w if

v ((1, 2) , w) ≥ 0
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v ((1, 3) , w) ≥ 0

v ((1, 2) , w) + v ((1, 3) , w) ≥ v ((2, 3) , w)

v ((1, 2) , w) + v ((1, 3) , w) ≥ v ((1, 2, 3) , w) .

The first two conditions require that binary variable 1 be a complement with each of the

other two variables. The third condition requires that the sum of the interaction effects among

variable 1 and the other two be larger than the interaction effect between the latter; notice

that this condition always holds if the choice variables 2 and 3 are mutual substitutes. The

last condition is a subadditivity condition. Though we selected choice variable 1, the same idea

applies if the leading choice variable is either 2 or 3.

Global Concavity for Discrete Domains: B4 is a local notion of concavity for discrete

domains. Thus, it also holds under a global analog of discrete concavity. That is, if, for all

a, a′ ∈ {0, 1}n with ‖a− a′‖ = 2,

max
a′′:‖a−a′′‖=‖a′−a′′‖=1

U (a′′, w, z, ε)

{
> min {U (a, w, z, ε) , U (a′, w, z, ε)} if U (a, w, z, ε) 6= U (a′, w, z, ε)

≥ U (a, w, z, ε) = U (a′, w, z, ε) otherwise
.

In this case, B4 holds with any âw ∈ {0, 1}n for each w.

A formal proof that global concavity implies B4 can be found in Ui (2008) —the latter

refers to our condition as the larger midpoint property. Global concavity imposes non-trivial

restrictions on the cross effects of multivariate functions and, in our model, the support of

unobservables and explanatory variables. In particular, if the unobservables and explanatory

variables can take values on the entire real line, then the interaction effects must be identically

zero for concavity to hold globally. Thus, this requires B1 to be relaxed. For this reason, we

cannot recommend basing identification on global concavity explicitly. However, assumption

B4 itself can be thought as a weaker (local) version of discrete concavity that is compatible

with our other restrictions.

D.2 n-Goods Bundle Model

Consider an agent that decides whether to buy each of n possible goods. The consumer selects

the combination of goods a = (a1, a2, ..., an) ∈ {0, 1}n that maximizes

U (a,W, p, ε, η) =
∑

i≤n
(ui (W )− pi + εi) · ai + v (S (a) ,W ) .
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This model allows the signs of the interaction effects to depend on the identity of all the

acquired goods. The model is identical to the previous model if we treat prices as the exclusion

restrictions.

Corollary D.1. If Z = (−pi) i≤n, identification of the bundles model follows from Theorem

D.1.

D.3 n-Players Potential Game

Consider an extension of the game in Section 2.3 of the text to N = {1, ..., n} players. Each

player i ∈ N chooses an action ai ∈ {0, 1}. The payoff of player i from choosing action 1 is

U1,i (a−i,W, Z, εi) = ui (W ) + Zi + εi + vi (a−i,W ) , (3)

while the return from action 0, U0,i (a−i,W, Z, εi), is normalized to 0. In addition, we normalize

vi (a−i,W ) to 0 when the actions of all players but i are 0. We denote this game by Γ (W,Z, ε) .

The definition of a pure strategy Nash equilibrium a∗ = (a∗i )i≤n naturally extends from the

two-player case. The same conditions that facilitate identification of the game guarantee that

its equilibrium set (in pure strategies), D (w, z, ε), is non-empty.

We want to recover
(
(ui, vi)i≤n , Fε|W,Z

)
from the available distribution of equilibrium choices

Pr (a | w, z). We next show that, by restricting attention to the class of potential games and

relying on the equilibrium selection rule based on potential maximizers, then identification of

the game is mathematically equivalent to identification of the model studied at the beginning

of this appendix. The theoretical arguments of Ui (2001) and most of the laboratory evidence

cited for why players might coordinate on the potential maximizer in Section 2.3 of the text

are not specific to two-player games.

A function U : {0, 1}n × Rk × Rn → R is a potential function for Γ (w, z, ε) if, for each

i ≤ n and all a−i ∈ {0, 1}n−1 ,

U (ai = 1, a−i, w, z, ε)− U (ai = 0, a−i, w, z, ε) = U1,i (a−i, w, z, εi) .

Γ (w, z, ε) is a potential game if it admits a potential function. Let us write

S (a) = {S ⊆ S (a) | |S| ≥ 2} andS (a, i) = {S ⊆ S (a) | |S| ≥ 2, i ∈ S}

where S (a) is the set of players that select action 1 in the action profile a. The notation S(a, i)

returns the empty set when ai = 0. Ui (2000, Theorem 3) shows that Γ (w, z, ε) is a potential
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game if and only if there exists a function

{
ṽ (S,w, z) | ṽ (S,w, z) : N × Rk → R, |S| ≥ 2

}
such that, for each i ∈ N and all a ∈ {0, 1}n ,

U1,i (a, w, z, εi) = ui (w) + zi + εi +
∑

S∈S(a,i)
ṽ (S,w, z) .

A potential function is given by

U (a, w, z, ε) =
∑

i∈N
(ui (w) + zi + εi)·ai+v (S (a) , w, z) with v (S (a) , w, z) =

∑
S∈S(a)

ṽ (S,w, z) .

Briefly, an n-player game admits a potential representation if the interaction terms are

group-wise symmetric. We next present our main result.

Corollary D.2. If a binary game admits a potential function and players coordinate on the

potential maximizer, then identification of the game follows from Theorem D.1.

By Theorem D.1,
(
(ui)i≤n , v, Fε|W,Z

)
is identified in our initial framework and it is readily

verified that we can recover ṽ from v by a one-to-one change of notation. The four sufficient

conditions provided above for the notion of local concavity in condition B4 have counterparts

for the analysis of the game. That is, the analog to B4 holds in the game context if one or more

of the following conditions are satisfied: there are only two players; the game is of strategic

substitutes; the game is of strategic complements and there is a leading player that fulfills the

required conditions; or the potential function is discrete globally concave.

D.4 Proof of Theorem D.1

We first show that if B1–4 are satisfied, then Fε|W is identified. We then show that if B1–3 are

satisfied and Fε|W is identified, then
(
(ui)i≤n , v

)
is also identified.

Identification of Fε|W

By B4, for each W = w, there exists a known vector âw ∈ {0, 1}n such that, for any w, z and

ε, U (a, w, z, ε) is maximized at âw if U
(
âwi , â

w
−i, w, z, ε

)
≥ U

(
a′i, â

w
−i, w, z, ε

)
for all i ∈ N and
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a′i = 1− âwi . This condition holds if, for all i ∈ N ,

(1 (âwi = 1)− 1 (âwi = 0)) εi ≥ (4)

v (S (a′) , w)− v (S (âw) , w)− (1 (âwi = 1)− 1 (âwi = 0)) (ui (w) + zi) ,

where a′ is obtained from âw by changing only âwi and 1 (.) is the usual indicator function.

We next recover Fε|W from variation in z using Pr (âw | w, z). From B4 we get that

Pr (âw | w, z) = Pr ((4) holds for all i ∈ N | w, z) .

Define the random variable µi for each i ∈ N to be

µi = (1 (âwi = 1)− 1 (âwi = 0)) εi

− (v (S (a′) , w)− v (S (âw) , w)) + (1 (âwi = 1)− 1 (âwi = 0)) (ui (w)) .

Let µ ≡ (µ1, . . . , µn), which is independent of Z conditional on W = w. Therefore,

Pr (âw | w, z) = Pr (µi ≥ − (1 (âwi = 1)− 1 (âwi = 0)) zi for all i ∈ N | w, z) .

We identify the upper probabilities of the vector µ, conditional on w, at all points

z̃ = (− (1 (âw1 = 1)− 1 (âw1 = 0)) z1, . . . ,− (1 (âwn = 1)− 1 (âwn = 0)) zn) .

By the large support in B1 and the fact that z̃ is at most a sign change from z, the random

vector Z̃, defined in the obvious way, has support on all of Rn. Therefore, we learn the upper

tail probabilities of µ conditional on W = w for all points of evaluation µ∗. Upper tail proba-

bilities completely determine a random vector’s distribution, so we also identify the lower tail

probabilities of µ conditional on w, also known as the joint CDF of µ conditional on w. Note

that εi is the only random variable in µi, conditional on W = w. By B2(ii), E (ε | W ) = 0.

Therefore, up to the possible sign change in (1 (âwi = 1)− 1 (âwi = 0)), the distribution of ε

conditional on w is identified from the distribution of µ− E (µ | w) conditional on w.
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Identification of
(
(ui)i≤n , v

)
The remaining argument conditions on W = w. Recall the utility function in equation (2). The

deterministic portion of utility plays a key role in the identification argument. Therefore, let

Q (a, w, Z) ≡
∑

i∈N
(ui (w) + Zi) · ai + v (S (a) , w) .

Our location normalization is that Q (a, w, Z) = 0 for a = (0, 0, ..., 0).

For expositional ease, we order the elements of {0, 1}n in terms of the lexicographic order

so that a1 = (0, 0, ..., 0), a2 = (1, 0, ..., 0), ..., and a2n = (1, 1, ..., 1). In addition, we define

4jε (a′) ≡
∑

i∈N
εi1
(
aji = 1

)
−
∑

i∈N
εi1 (a′i = 1) and 4jQ (a′, w, Z) ≡ Q (a′, w, Z)−Q

(
aj, w, Z

)
.

We indicate by 4Q (a′, w, Z) and 4ε (a′) the (2n − 1)−dimensional vectors

(
Q (a′, w, Z)−Q

(
aj, w, Z

))
j≤2n,aj 6=a′

and
(∑

i∈N
εi1
(
aji = 1

)
−
∑

i∈N
εi1 (a′i = 1)

)
j≤2n,aj 6=a′

.

Given this notation, for each a′,

P
(
4Q (a′, w, z) | w, z;Fε|w,z

)
≡ Pr (4ε (a′) ≤ 4Q (a′, w, z) | w, z)

is the probability of observing the choice vector a′ conditional onW,Z = w, z —i.e., Pr (a′ | w, z).
More formally, let F4ε(a′)|w,z be the distribution of 4ε (a′). Then,

P
(
4Q (a′, w, z) | w, z;Fε|w,z

)
≡
ˆ
...

ˆ
1
(
41ε (a′) ≤ 41Q (a′, w, z)

)
...1
(
42nε (a′) ≤ 42nQ (a′, w, z)

)
dF4ε(a′)|w,z.

The researcher can identify Pr (a′ | w, z) directly from the data.

Let Q̃ (a, w, Z) 6= Q (a, w, Z). As Z enters both Q̃ and Q in the same way, this means that

one or more of (ui (w))i∈N and v (S (a) , w) differ across Q̃ and Q for W = w. We next show

that, without loss of generality, P
(
4Q (a′, w, z) | w, z;Fε|w,z

)
> P

(
4Q̃ (a′, w, z) | w, z;Fε|w,z

)
for some a′ and Z = z, so that Q is identified and we can then recover

(
(ui)i≤n , v

)
. To this

end, let

C (w, z) ≡ arg maxa

{(
Q (a, w, z)− Q̃ (a, w, z)

)
| a ∈ {0, 1}n

}
.

Note that by the formulas for
(
Q (a, w, z)− Q̃ (a, w, z)

)
, C (w, z) does not vary with z. Also

suppose maxa

(
Q (a, w, z)− Q̃ (a, w, z)

)
> 0; the other case follows by a similar argument.
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DefineD (w, z) ≡ {a /∈ C (w, z) | a ∈ {0, 1}n}. We know C (w, z) 6= ∅. The fact thatD (w, z) 6=
∅ follows as

Q (a = (0, 0, ..., 0) , w, z) = Q̃ (a = (0, 0, ..., 0) , w, z) = 0 (5)

and we supposed that maxa

(
Q (a, w, z)− Q̃ (a, w, z)

)
> 0.

Fix some a′ ∈ C (w, z) . We know that Q (a′, w, z) − Q̃ (a′, w, z) = Q (a, w, z) − Q̃ (a, w, z)

for all a ∈ C (w, z), and Q (a′, w, z)− Q̃ (a′, w, z) > Q (a, w, z)− Q̃ (a, w, z) for all a ∈ D (w, z).

Rearranging terms,

Q (a′, w, z)−Q (a, w, z) = Q̃ (a′, w, z)− Q̃ (a, w, z) for all a ∈ C (w, z) , and

Q (a′, w, z)−Q (a, w, z) > Q̃ (a′, w, z)− Q̃ (a, w, z) for all a ∈ D (w, z) .

By B2 and B3, the argument in the following paragraphs ensures that we can find z such that

ˆ
...

ˆ
1
(
41ε (a′) ≤ 41Q (a′, w, z)

)
...1
(
42nε (a′) ≤ 42nQ (a′, w, z)

)
dF4ε(a′)|w

>

ˆ
...

ˆ
1
(
41ε (a′) ≤ 41Q̃ (a′, w, z)

)
...1
(
42nε (a′) ≤ 42nQ̃ (a′, w, z)

)
dF4ε(a′)|w,

i.e., P
(
4Q (a′, w, z) | w, z;Fε|w

)
> P

(
4Q̃ (a′, w, z) | w, z;Fε|w

)
. Therefore, Q is non-constructively

identified at w, and hence
(
(ui (w))i≤n , v (w)

)
is identified as well.

As mentioned previously, we need to find an appropriate value for z. This choice of z

involves an additional detail that we address next. The inequalities that allow us to show

that P
(
4Q (a′, w, z) | w, z;Fε|w

)
> P

(
4Q̃ (a′, w, z) | w, z;Fε|w

)
are the ones that involve

a ∈ D (w, z). Some of the inequalities involving a ∈ D (w, z) may be implied by other in-

equalities for any z. To see this, suppose there are two substitute items and let a′ = (0, 0),

C (w, z) = {(0, 0) , (1, 0) , (0, 1)} and D (w, z) = {(1, 1)}. Under substitutes, Q ((0, 0), w, z) ≥
Q ((1, 0), w, z) andQ ((0, 0), w, z) ≥ Q ((0, 1), w, z) together implyQ ((0, 0), w, z) > Q ((1, 1), w, z).

In this example, the fact that two inequalities imply a third means that marginal changes

in the interaction term, v, will not affect the probability of the outcome (0, 0). Therefore,

a′ = (0, 0) does not allow us to effectively distinguish Q from Q̃ as we just claimed. No-

tice that we assumed (0, 0) ∈ C (w, z), which is not possible as we are covering the case

maxa

(
Q (a, w, z)− Q̃ (a, w, z)

)
> 0 and (5) holds. The next argument extends this idea.

We now show that there always exists some a′′ ∈ D (w, z) for which the inequalityQ (a′, w, z) ≥
Q (a′′, w, z) is not directly implied from Q (a′, w, z) ≥ Q (a, w, z) for all a 6= a′, a′′. By contradic-

tion, as we illustrated above, we will show that if this were not true, then (0, 0, ..., 0) ∈ C (w, z)

11



which is not possible as maxa

(
Q (a, w, z)− Q̃ (a, w, z)

)
> 0 and (5) holds.

For each a′ ∈ C (w, z), there are (at least) n inequalities that are not implied by the others.

These inequalities correspond to vectors of actions that differ from a′ regarding one single item.

To see this, let a′′ be equal to a′ except for some item i that is chosen at a′ but not at a′′. Then

Q (a′, w, z) ≥ Q (a′′, w, z) if and only if

ui (w) + zi + v (S (a′) , w) ≥ v (S (a′′) , w) .

All other inequalities Q (a′, w, z) ≥ Q (a, w, z) with a 6= a′, a′′, will involve at least an excluded

variable zj with j 6= i. Thus, we can always find a vector z such that Q (a′, w, z) ≥ Q (a, w, z)

with a 6= a′, a′′ and yet Q (a′, w, z) < Q (a′′, w, z). Thus, assume a′′ ∈ C (w, z). By repeating

this process ‖a′‖ times (the number of items being selected in bundle a′), we need to assume

(0, 0, ..., 0) ∈ C (w, z). But this is not possible, as we explained before. �
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