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Nonparametric identification and estimation
of random coefficients in multinomial choice
models

Jeremy T. Fox*
and

Amit Gandhi**

We show how to nonparametrically identify the distribution of unobservables, such as random
coefficients, that characterizes the heterogeneity among consumers in multinomial choice models.
We provide general identification conditions for a class of nonlinear models and then verify these
conditions using the primitives of the multinomial choice model. We require that the distribution
of unobservables lie in the class of all distributions with finite support, which under our most
general assumptions, resembles a product space where some of the product members are function
spaces. We show how identification leads to the consistency of a nonparametric estimator.

1. Introduction

B Heterogeneity among decision makers, be they firms or consumers, is a critical feature
of economic life. A classic example is demand for differentiated products. We observe many
competing products, each with different characteristics, being offered for sale. The presence of
these differentiated products suggest that consumers have heterogeneous preferences for product
characteristics. In order to model the demand for these products, one approach is to estimate the
distribution of consumers’ heterogeneous preferences.

In applications in empirical industrial organization, the demand for differentiated products is
typically modelled using a multinomial choice model (McFadden, 1973). In multinomial choice,
a consumer picks one of a finite number of alternatives, each with measured product charac-
teristics including price. In modern empirical practice, the key unknown object to researchers
is a distribution of unobserved heterogeneity (Domencich and McFadden, 1975; Heckman and
Willis, 1977; Hausman and Wise, 1978; Boyd and Mellman, 1980; Cardell and Dunbar, 1980).

*Rice University and NBER; jeremyfox@gmail.com.

**University of Wisconsin—-Madison; agandhi@ssc.wisc.edu.

Thanks to Stephane Bonhomme, Steven Durlauf, James Heckman, Salvador Navarro, Philip Reny, Susanne Schennach,
Azeem Shaikh, Christopher Taber, Harald Uhlig, and Edward Vytlacil for helpful comments. Also thanks to seminar
participants at many workshops. Fox thanks the National Science Foundation, the Olin Foundation, and the Stigler Center
for financial support. Thanks to Chenchuan Li for research assistance.

118 © 2016, The RAND Corporation.



FOX AND GANDHI / 119

This distribution of unobservables captures the heterogeneous preferences consumers have for
the product characteristics. Sometimes these heterogeneous preferences are called random coef-
ficients. We will use the term heterogeneous unobservables to encompass random coefficients
and other forms of heterogeneity. In the highest generality, each realization of the heterogeneous
unobservable can index a different realization of a utility function over product characteristics,
so that different consumers have different utility functions.

This article presents tools for identifying and estimating the distributions of heterogeneous
unobservables in a class of economic models that includes the multinomial choice demand model
with random coefficients. Indeed, this is the first article to show that such a distribution of
random coefficients entering linear indices in utilities is identified in a multinomial choice model
without logit errors. Also, we provide machinery to identify the distribution of heterogeneous
unobservables in a class of nonlinear models and then use the machinery to identify the distribution
of heterogeneous unobservables in the multinomial choice model.

We focus on the common data scheme in applied microeconomics where the researcher
has access to cross-sectional rather than panel data. In the multinomial choice environment,
we observe different consumers facing different menus of observed product characteristics. We
characterize each consumer in the population by a heterogeneous behavioral parameter 6 € ©®,
the heterogeneous unobservable. The heterogeneous unobservable 6 has distribution G. We seek
the nonparametric identification and estimation of G. In a high level of generality, 6 can be a
utility function of observed product characteristics.

The nonparametric identification and estimation of distributions of unobservables is well
understood in the case of the linear regression model with random coefficients. Let y = a + x'b,
where x is a real vector with continuous support and y is a real outcome variable. In the linear
random coefficient model, & = (a, b) is a heterogeneous vector of intercept and slope parameters.
One example is a Cobb-Douglas production function in logs, where y is log output, x is a vector
of log inputs, a is total factor productivity, and b is the vector of input elasticities. Compared
to a model without random coefficients, the random coefficient regression model allows the
effect of changing inputs x to vary across firms: b is a heterogeneous parameter. Some firms in
the same industry may have labor-intensive technologies and others may have capital-intensive
technologies. In the random coefficient production function model, the object of interest is the
distribution of random coefficients G(a, b), or the joint distribution of total factor productivities
and input elasticities. Knowledge of G(a, b) tells us the distribution of production functions
in an industry, which is an input to answering many policy questions, for example, the effects
of taxing some particular input. Beran and Millar (1994) and Beran (1995) first demonstrated
the nonparametric identification of the distribution of the slope and intercept parameters in the
linear model. Hoderlein, Klemel4, and Mammen (2010) focus mainly on estimation but show the
nonparametric identification of G(a, b) in the linear model while allowing endogeneity through
an auxiliary, linear instrumental variables equation without random coefficients.

Two articles that extend identification of the distribution of unobservables to a nonlinear
setting with continuous outcomes are Liu (1996) and our own, more general work in Fox and
Gandhi (2011). Fox and Gandhi study a nonlinear model where y = g(x, ), where g(-,-) is a
known, real analytic function of x for each 6, 6 is a finite or an infinite dimensional unobservable,
v is a real outcome variable, and x is a vector whose scalar elements take values in the reals
or rationals. For example, g(-, -) might represent some nonlinear production function, such as
the constant elasticity of substitution (CES). It might also represent an aggregate demand curve.
The object of interest is G(6), the distribution of the heterogeneous unobservables. Fox and
Gandhi allow endogeneity through a pricing equation that may have its own infinite dimensional
heterogeneous unobservable. This pricing equation is shown to be consistent with standard models
of price setting behavior, like Bertrand-Nash oligopoly.

The results in Fox and Gandhi (2011) apply to the case of modelling aggregate market shares
or quantities. However, they are less useful for estimating models of consumer choice using
microdata. Often in applied practice, models of consumer choice involve consumers making
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discrete choices. For example, a consumer may be modelled as choosing one out of a finite
number of competing brands. In a multinomial choice setting, the relationship between y and
x is discontinuous. Indeed, continuous changes in x and 6 can lead to discrete changes in the
choice made by the same consumer. There are existing results for discrete choice models with two
choices. Ichimura and Thompson (1998) and Gautier and Kitamura (2013) study identification and
estimation two-outcome choice models where random coefficients enter linear indices. Gautier
and Kitamura allow for endogeneity using an auxiliary equation without random coefficients.

Our result for the multinomial choice model nests the case of multiple purchases with
bundle-specific prices: consumers can choose two or more of the discrete alternatives and may
have preferences over the bundles themselves. We finally explore identification of the distribu-
tion of heterogeneous unobservables in the multinomial choice model where regressors such as
price can be endogenous. Our solution to endogeneity uses an auxiliary pricing function (with
heterogeneous unobservables) and hence parallels our solution to endogeneity for the case of
continuous outcomes in Fox and Gandhi (2011).

Our primitive assumptions help clarify the role of data in showing identification in the
multinomial choice model. Specifically, we rely on a product-specific regressor that enters ad-
ditively into the utility for a product and that can take on arbitrarily large values. Further, the
sign of the random coefficient on this particular regressor is common across consumers. The
additivity, common sign, and large support ensure that all consumers, indexed by heterogeneous
unobservables 6, will purchase any particular product at some value of the regressors in the data.
Indeed, our property for generic economic models includes the idea that different consumers, or
heterogeneous unobservables 0, must take different actions at some regressors x in order for the
distribution of 6, G, to be identified. We do not require these assumptions on the other product
characteristics and instruments in the model. Other articles making use of large support regressors
include Ichimura and Thompson (1998), Lewbel (1998), Lewbel (2000), Matzkin (2007), and
Berry and Haile (2010). We assume full independence between regressors or instruments and
the heterogeneous unobservables, instead of Lewbel’s assumption of only mean independence.
As pointed out by Magnac and Maurin (2007) and Khan and Tamer (2010), identification of
homogeneous parameters (which we do not study) under only mean independence is sensitive to
learning the tails of the distribution of unobservables, as means are sensitive to the exact masses
in the tails. Fox, Kim, Ryan, and Bajari (2012) do not require large support regressors but require
the parametric assumption that additive errors for each discrete choice are i.i.d. with the type I
extreme value distribution, which leads to the random coefficients logit model.!

Note that large support regressors can be used to identify the distribution of utility value
realizations for all choices in a multinomial choice model, as in Berry and Haile (2010). Our
results are only useful relative to the literature when the researcher is interested in learning the
joint distribution of random coefficients in a linear index model, a joint distribution of finite
dimensional heterogeneous parameters entering a known utility function, or the joint distribution
of utility functions for all choices. We describe the difference with, say, Berry and Haile (2010)
in the objects of identification in more detail below.

Our identification results for the multinomial choice model rely on other possibly strong
assumptions, which are also maintained to a lesser degree in Fox and Gandhi (2011). Most
importantly, we require that the true distribution of unobservables takes unknown but finite
support in the space of possible unobservables, which in full generality might be a function
space. Thus, we learn the number of support points and the location of the support points in
identification. Because the space where the unobservable lives can be a function space, the space
of distributions of unobservables resembles a product space where certain elements of the product

!'Chiappori and Komunjer (2009) discuss some assumptions under which they can show the identification of a
multinomial choice model without additive regressors. Manski (2007) considers identification of counterfactual choice
functions and structural preferences when there are a fixed number of decision problems and no observed regressors
x. Hoderlein (2013) considers a binary choice model with endogenous regressors. Briesch, Chintagunta, and Matzkin
(2010) study a model with a scalar unobservable that enters nonseparably into the utility of each choice.
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are function spaces. Clearly, it would be nice to relax the unknown but finite support assumption,
but we believe our results to be on the frontier of known results for the multinomial choice model.

Second, we require that each distinct unobservable utility function over observable product
characteristics take on different values in an open set of observed product characteristics. In other
words, every two realizations of the heterogeneous unobservables have different utility values
for some product characteristics within an arbitrarily small set of product characteristics. Each
realized utility function, if the utility function is the heterogeneous unobservable, being real
analytic in observed product characteristics is sufficient for this property. We are less concerned
with the restrictiveness of this assumption as analytic functions nest utility functions that are
linear in the regressors and the random coefficients, a common specification.

Our identification results show that only the true distribution of heterogeneous unobservables
could generate a data set with an infinite number of observations. We also discuss nonparametric
estimation of the distribution of heterogeneous unobservables. Here we turn to the computationally
simple, nonparametric estimator of Fox, Kim, Ryan, and Bajari (2011) and Fox, Kim, and Yang
(2015). To make the discussion of how identification leads to a consistent estimator self-contained,
we cite a consistency theorem from Fox, Kim, and Yang (2015) and show how the identification
results in this article show that this estimator is consistent.

Section 2 previews our identification results for a simple multinomial choice model where
random coefficients enter into linear indices, a common empirical specification. Section 3 reviews
notation for a generic economic model, states the property for identification and proves, by
contradiction, that the property is sufficient for identification of the distribution of heterogeneous
unobservables in the generic model. Section 4 applies the framework for the generic economic
model to our case of primary interest, identifying the distribution of heterogeneous unobservables
in the multinomial choice model, which nests the linear random coefficients in Section 2. Section
5 extends our results for multinomial choice to allow for price endogeneity. Section 6 explores
estimation and shows how to use our identification arguments with a particular nonparametric
estimator. Section 7 concludes.

Mathematically, we demonstrate the identification of the distribution of unobservables in
three multinomial choice models: those in Sections 2, 4, and 5, with the model of Section 2
again being a common empirical specification of the more general model in Section 4. For brief
illustration, we also consider trivial examples of models in Section 3. All three identification
results for multinomial choice models and the identification results for trivial examples are
applications of the identification machinery for a generic, not necessarily multinomial choice,
model in Section 3. Therefore, we need to show how the notation for the generic model maps
into the five separate models. As a consequence, notation is used differently for each of the five
specific models as, for example, the key notion of the heterogeneous unobservable differs across
the models.

2. Random coefficients entering linear indices

B This section introduces a simple multinomial choice model where random coefficients enter
linear indices and previews our results on identification for this example.

Let there be J inside goods and choice 0, the outside option of no purchase. Each good could
be a competing product. Let ) be the set of J inside goods plus the outside good 0. Let x; be a
vector of observable (in the data) characteristics for product j. In our main results, these will be
characteristics with continuous support. Characteristics will vary across choice situations (say,
geographic markets), or if product characteristics are interacted with consumer demographics,
consumers. We suppress the consumer and market subscripts for simplicity. Let x = (x, ..., x,)
collect the characteristics for all choices.

The utility to choice j is x8 + €;, where €, is an additive intercept in ;s utility reflecting
the horizontal taste for a product and § is a vector of random coefficients. €; and § are specific
to the consumer, so that consumers have heterogeneous marginal valuations of the observed
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product characteristics in x;. We do not assume that each €; has mean 0, so €; subsumes the role
of a homogeneous (nonrandom) intercept for product j. Each element of the vector of random
coefficients S gives the consumer’s marginal utility for the corresponding product characteristic
inx;. The outside good indexed by 0 has its utility normalized to 0. The vector 0 = (B, €, ..., €,)
collects all the unobservable terms for a consumer and is the key heterogeneous unobservable
whose joint distribution we will identify. Given this, the discrete choice y € ) is given by

j=1’

y = f(x,0) = argmax {{xp+e), .0},

where 0 corresponds to the normalized utility of choice 0 and f(x, 8) picks the choice with
the highest utility for a consumer with heterogeneous unobservables 6 and a menu of observed
product characteristics x.

For each consumer, the researcher observes (x, y), or the menu of observed characteristics
and the discrete choice. Using these data on the choices of different consumers, the goal is to
identify the true distribution G°(6), or how the random coefficients B and intercepts €, in the
vector 6 vary across consumers. Given this structure, the probability of a consumer picking choice
j given observed product characteristics x is

Proo (j | x) = / 1 = / (x.0)]dG"6).

or the integral of the purchase decision over the distribution of consumer additive errors and
random coefficients. This can also be seen as a market share equation. This choice probability
imposes that the heterogeneous unobservables 6 are independent of the product characteristics x.
We delay a discussion of the endogeneity of product characteristics (like price) until Section 5.
We set x'8 +¢€; = v, +r; +¢; for x; = (v;, r;), where v; is a vector of characteristics
and r; is a special, scalar characteristic called a choice-specific special regressor. In our use, the
term will refer to a regressor with a (i) common sign across consumers and (ii) support equal
to R, the real line. The fact that the coefficient of 7; is £1 is a scale normalization: the units of
utility are not identifiable, so we express them in units of 7; for each consumer.” The assumptions
that the sign of »; is common across consumers and that the support is large are restrictive.
The binary and multinomial choice literature usually uses such a special regressor to gain point
identification (Manski, 1988; Ichimura and Thompson, 1998; Lewbel, 1998, 2000; Berry and
Haile, 2010; Briesch, Chintagunta, and Matzkin, 2010; Matzkin, 2007; Gautier and Kitamura,
2013).* The intuition, which we will make explicit below, comes from the need that different
consumer heterogeneous unobservables 6 must take different actions y at different choice sets x.
Say J =1 and ¢, is very high, but different, for two consumers. Then, both consumers will buy
the inside good for typical values of v, and ;. Only by making r, very small can we ensure that
one or both of the consumers switches to buy the outside good of 0, when v; 8 47, + ¢, < 0. So,
we need a regressor 7, that can shift the payoff of each choice to be arbitrarily large or small, as
the utility of each choice from the additive component €; can also be arbitrarily large or small.
What results on identification exist in the literature using this special regressor assumption?
Ichimura and Thompson (1998) study the case of one inside good or J = 1 and show that
G°(0) is identified using the Cramér and Wold (1936) Theorem. Gautier and Kitamura (2013)
provide a computationally simpler estimator for the same model. These two articles have not been
generalized to multinomial choice. In several articles, Matzkin studies identification in discrete
choice models where there are limits to the correlation of utility across choices, so that our
example model is not a special case (Matzkin, 2007; Briesch, Chintagunta, and Matzkin, 2010).

2 The sign of r; can be easily identified. If ; enters utility with a positive sign, the observed conditional (on product
characteristics) probability of picking choice j will increase when r; increases.

3 Ichimura and Thompson (1998) and Gautier and Kitamura (2013) require all regressors to have large support but
only one to have a common sign.
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Lewbel (2000) and, in a more general context circulated contemporaneously with the first draft
of our article, Berry and Haile (2010) show that the distribution of # = (&1, .. ., it;) where

is identified conditional on v = (vy, ..., v;), the nonspecial regressors. This means that the
distribution H (& | v) of the vector of the non-r utility values it conditional on v is identified from
variation in the special regressors » = (71, ..., ;). The argument for this is simple. The choice
probability for the outside good 0 can be written

Pr(le):Pr(Olv,r):/l[v"/ﬂ+rj+ej§0Vj=l,...,J]dGO(ﬂ,el,...,eJ)
=Pr([ll S_rh'"'aa.li_rJ|v5r)=H(_r|v)'

The latter object is the cumulative distribution function (CDF) of &, H(it | v), evaluated at the
point # = —r. Thus, if the vector of special regressors r varies flexibly over R’, we can trace out
the CDF of the J utility values iz, conditional on v. Knowing the distribution of utility values is
enough to predict market shares in the sample, that is, for values of v and » observed in the data.

Our article attempts to get at the distribution G°(9) = G°(8, €, ..., €,) of random coeffi-
cients and random intercepts. This is the primitive of the multinomial choice model in this section.
Identifying the true primitive is useful in several contexts. For example, identifying G°(9) lets
one predict the market shares for values of the product characteristics in v not observed in the es-
timation sample. This is the new goods problem: we identify Prso(j | v*, 7) for menus of product
characteristics v* not in the original data’s support of Preo(j | v, r). Also, identifying G°(0) lets
one find the distribution of utility differences between two choice situations. We identify the joint
distribution of (v/'B +¢€, +7; — (VB +€; +r j))j:], the utility improvement for each of the J
products if the product characteristics in x = (v, ) change to x* = (v*, 7*). We can also identify
the distribution of

J

s 7o o] =l el o] 0

j=1" j=1"

the differences in maximized utility values, one version of a “treatment effect” for changing x
to x*.

By contrast, the distribution of utility values H (i | v) does not assign utility to particular
realizations of heterogeneous unobservables 6, and so a researcher cannot calculate (1). The lack
of a distribution of heterogeneous unobservables and consequently utility functions prevents the
researcher from computing a distribution of welfare changes, a major use of structural demand
models. Of course, the distribution of utility values is sufficient to identify mean utility differences,
as means are linear operators and so calculating them requires only the distribution of utility values
at both x and x*:

B[+ +r) ~ 8+ +r)] = EjB+e 4] - B[+, +1].

Again, previous results allow this computation only for v and v* in the original support of v.
The main result of our article, for this example, is that G°(0) is identified from data on
(x, ), with r having full support. As we are identifying a more primitive object than Lewbel
(2000) and Berry and Haile (2010), we impose a stronger assumption on the support of 6. In
particular, we impose that & has unknown finite support. In other words, for this example, we
assume that G° is known to lie in the space G of distributions that admit a finite support on
R4m® We learn the number of and location of the heterogeneous unobservables in the support
of G° as part of identification. This assumption does not nest the random coefficients logit, as the
type I extreme value distribution on the €;’ has continuous support and the 8 often is assumed
to have a normal distribution, which also has continuous support. However, we do not impose
assumptions such as the type I extreme value and normal distributions. We also do not impose
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that 8 is independent of the additive errors €, ..., €, or that the additive errors are i.i.d. across
choices.

3. A generic economic model

B Wenow consider a generic economic model that can be described by atuple (©, X, ), 1, G).
The space ® of heterogeneous unobservables 8 represents, in a demand model, the feasible set
of consumer preferences admitted by the model. The space ® can be a function space; in a later
section each consumer will have its own, heterogeneous utility function. The fact that ® can be
infinite dimensional is why the title of the article refers to “nonparametric.”

The set &' denotes the set of economic environments in the support of the data-generating
process. The set ) is the (measurable) outcome space. The known function f: X x ® — Y
maps a consumer’s heterogeneous unobservable 8 € ® and economic environment x € X to
an outcome y = f(x,6) € V. The joint distribution of outcomes and environments (y, x) is
identified from the i.i.d., cross sectional data. What remains to be identified is the distribution of
heterogeneous unobservables G € G in the population, where G is a set of probability measures
over ®. Not surprisingly, proving the identification of G will require assumptions on all aspects
of the model (®, X, ), f, G).

As discussed previously, we let G be the class of distributions with finite support on ®.
Therefore, we can represent each G € G by the notation

(Nv (Qna wé)n),z,v=1) )

where the number of heterogeneous unobservables N is an unknown to be identified, as are
the identities of each support point 8, and the weights on each support point wy,. Of course,
Zn\:l wy, = 1. Because © can be a function space, G resembles a product space where some of
the element spaces in the product can be function spaces.* Indeed, even one support point 8, of a
distribution in G lies in ®, which can be a function space.

Let A € Y be a measurable subset of the outcome space. Assuming statistical independence
(for now) between the heterogeneous unobservable 6 and the covariates x, if G° € G is the true

distribution of heterogeneous unobservables in the population, we have that

NO
Proo (A | x) =G ({0 € O | f(x,0) € 4}) = Zanl [f(x,@f) € A]. 2)
n=1
Different values of G° will induce different weights (zero and nonzero) on the sets of the form
I,.,=1{0 € ®]| f(x,0) € A}, which are indexed by a point x and a set 4 € ). The problem
is whether the class of such sets I, is rich enough to point identify G° within the class of
distributions G.

To state the identification problem precisely, let Pr(- | x) be a probability measure over )
for a given value x € X of the environment. Let P = {Pr(- | x) | x € X’} denote a collection of
such probability measures over all possible economic environments and let P denote the set of all
such collections P. Then, we can view (2) as a mapping L : G — P. We will say the distribution
G" is identified if L is a one-to-one map. That is, for any G, G’ € G, and G # G, there exists an
experiment in the data (4, x) where A € Y and x € X such that Pr;(4 | x) # Prs/(4 | x), where
Prs(- | x) and Prg (- | x) are the images of G and G, respectively, under L.

Identification requires showing that, for any two potential distribution of heterogeneous
unobservables, there always exists an experiment in the data (A4, x) that can empirically distinguish
between these distributions. For specific models, the researcher in some sense needs flexible
supports for ) and X" to find such an experiment (A4, x) to distinguish any two distributions. In

4§ is not a classical product space because N, the number of support points 6,, determines the number of spaces in
the product, and N is to identified from the data. If N were fixed by the researcher, then G would be the classical product
space [0, 17V x OV,
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the multinomial choice model, ) is a list of exclusive, discrete choices. Not surprisingly then,
identification of G° in the multinomial choice model will require flexibility in X, the support of
the product characteristics.

Definition 1. For any set of heterogeneous unobservables 7 C ©, and forany 4 € Y andx € X,
the /-set /]  is defined as

IT. ={0eT|f(x.0)c 4}

An [-set is the set of heterogeneous unobservables within an arbitrary subset of heteroge-
neous unobservables 7 C ® whose response is in the set A4 at the covariates x. Thus, /-sets are
indexed in part by the observables in the data: the dependent variable set 4 and the independent
regressor vector x. [-sets are strictly a property of the underlying economic choice model and
are independent of the particular distribution of unobserved heterogeneity G. The set of hetero-
geneous unobservables 7 should not be seen as the support of the true distribution, but merely
an arbitrary set of heterogeneous unobservables. Further, the full set of feasible heterogeneous
unobservables ® within the model can be quite distinct from the subset 7 considered in the
definition of an 7-set.

Example. Consider the simple example y = f(x,60) = x + 6, where ® = R. Let 4 = {y} for
some y.Let T = {0,, 6,, 65} . Then, I‘T‘ = {0 € {6,, 0,, 65} | y — x = 6}. In this example, I;X will
be either a singleton such as {0,} or the empty set #.

We now state and prove an identification result for this generic economic model.

Theorem 1. Let a generic model (©, X, )Y, f,G) satisfy the following property.

* For any finite set 7 C O, there exists a pair (4, x) such that corresponding /-set /] _is a
singleton.

Then, the true G° € G is identified.

The theorem states that the researcher can identify the number N, identity {9,,};:/:1, and
the mass {w,}", of the support points. The property in this theorem is useful because we can
prove that it holds using primitive assumptions in empirical models of some interest, such as
the multinomial choice model. The property in the theorem also clarifies the role of dependent
and independent variables in identification. Their role is to find situations x where different
heterogeneous unobservables 6 take different actions y.

Proof. Recall that identification requires showing that the mapping L : G — P defined by (2) is
one to one. Thus for G°, G' € G with G° # G', we must have that Prgo(4 | x) # Prgi(4 | x) for
some 4 C ), x € X.Inparticular, for any P € L(G), we show that L(G°) = L(G') = P implies
G’ =G

We can represent any G € G by a pair (7, p), where T = {6, ...,0y} C O is a finite set
of heterogeneous unobservables and the probability vector w = {wy}s.r comprises nonnegative
masses that sum to one over 7. Given the representation (7', w) for G € G, we can express (2) as

Pro (A |x)= ) . 3)
0el]
If G° is represented by (7°, w’) and G' is represented by (7!, w'), then we can redefine w°
and w' so that G° and G' are represented by (7, w”) and (T, w'), respectively, where T = T° U T'!
(e.g.,if0 € T — T°, then set w) = 0). T is still finite. Moreover, if we define the vector {7, }scr
such thatVo € T, m, = w] — wj, then G° = G' ifand only if 7, = 0 forall 6 € T.
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Our goal is to show that L(G") = L(G") implies G° = G'. Observe that L(G’) = L(G")
implies that for all 4 € ) and x € X, Prgo(4 | x) = Prgi(4 | x) = Pr(4 | x), which by (3)

implies that
> m =0, 4

T
oely .

for all /-sets /] . We now show that (4) implies 7, = 0 for all 6 € T. Assume to the contrary
that 7, = {0 € T | my # 0} is nonempty. By the property in the statement of the theorem, we can
produce a singleton /;°, = {6*}. Furthermore, we can rewrite (4) as

ZTF9=Z779+ Z 776=Z7Te=779'?50,
7y T,

T - T -
Oeli oel oely? bel

which contradicts (4). Hence, it must be that 7, is empty, and thus 7y = 0 forall6 € T. ]

The above proof is nonconstructive.” We show how this identification argument can yield a
consistent, nonparametric estimator for G in Section 6.

O  Trivial examples. We now present two trivial examples, one of a model that is clearly
identified and one of a model that is clearly unidentified. We show that the former model satisfies
the property in Theorem 1 and the latter model does not.

Let the model be y = 6, with 8 € ® C R. The heterogeneous unobservable 6 is just the
dependent variable itself. This distribution of 8 in this model is clearly identified because the
observed distribution of y is the distribution of 6. This model also satisfies the property in
Theorem 1. Let /] = {0 € T | 6 = y}. Then, choosing any y* = 6" for any 6" € T gives I
equal to just the singleton {6*}.

Now consider the model y = 6, + 6,, with§ = (8,, 6,) € R?. The joint distribution of 6, and
6, in this model is clearly not identified and thus it is instructive to consider where the property
in the theorem fails. Consider the /-set I” ={0 € T | 6, + 6, = y}. For a counterexample to
the sufficient condition for identification, let 7 = {6', 6} such that 6! + 6, = 62 + 6 but the
heterogeneous unobservables are distinct, so 6! # 62, For y* = 0! +6,, I". = T and for any
y#Ey, IJT = ). Therefore, the property in Theorem 1 is not satisfied.® '

4. Heterogeneous utility functions

B This section explores multinomial choice in a more general setting than the case of random
coefficients entering linear indices in Section 2. The key generalization is that the heterogeneous
unobservable 6 indexes utility functions over product characteristics. In other words, utility
functions are heterogeneous; each consumer has its own, possibly nonlinear utility function for
weighting observed product characteristics. We will state a set of assumptions that allow us to
apply the identification machinery for a generic model in Theorem 1 to the multinomial choice
model.

Consider a consumer 6 making a discrete choice from among J products and one outside
good. Let Y = {0, 1, ..., J}, where 0 is the outside good. Each product j € ) — {0} is charac-
terized by a scalar characteristic 7, € R. We let v € R* denote the observed characteristics of
the consumer and the menu of product characteristics (of the J products) excluding the scalar

5 The property in Theorem 1 is sufficient for identification, but the property is not necessary. Indeed, our compu-
tational experiments suggest that the true distribution of heterogeneous unobservables can be estimated in at least one
model that does not satisfy the property.

© Generalizing this example to the generic model of Theorem 1, one can prove that G° will not be identified if
I equals either T or # for each 4, x and some fixed, finite set 7 C © with two or more elements. The heterogeneous
unobservables in 7 always take the same action 4 and their frequencies cannot be separately identified.
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characteristics in » = (r,, ..., r,). We call the choice-specific regressors r; special regressors.
Let ¥ C RX be the support of v in the data. Furthermore, let x = (v, 7) € R¥*/ denote the entire
menu of consumer and product characteristics, including the scalar characteristics, and let X’
denote its support.

Our first key assumption follows the usual special regressor convention that the permis-
sible range of variation in each »; for j € J is independent of the product and consumer
characteristics v.

Assumption 1. X =V x R’.

A realization of the heterogeneous unobservable § = u = (u!, ..., u”’) is a vector of func-
tions of the product characteristics v € V. That is, a realization of the heterogeneous unobservable
0 is a vector of functions u : ¥ — R’ where each individual function is given by u/(v). Utility
functions are heterogeneous across consumers. The goal is to identify the distribution of the
heterogeneous and unobservable utility functions 8 = u = (u', ..., u”’).

Assumption 2. The vector-valued function 6 is statistically independent of the observable product
characteristics and consumer demographics x = (v, r).

We discuss endogeneity of the product characteristics in v in Section 5. We need a mono-
tonicity and additive separability assumption for the special regressor r;.

Assumption 3. The utility of a heterogeneous unobservable 6 = u = (u', ..., u’) purchasing
product j is u’/(v) +r;.

The utility of the outside good j = 0 is normalized to 0. A consumer’s response atx = (v, r)
is given by the discrete choice that maximizes utility, or

y=f(x.60) =argmax {{w' ) + 7.}, .0}

j=1"

We restrict attention to utility functions that satisfy a particular no-ties property. Let 6(v)
be the vector of utility values of the inside goods evaluated at v, meaning 6(v) = u(v) =
(u'(v), ..., u’(v)) . This property simply says that different heterogeneous unobservables have
different utility realizations at some point v in V.

Assumption 4. The heterogeneous unobservable space © of feasible utility functions satisfies the
following property. For any finite subset of M utility function vectors {6, ..., 0),}, there exists
v € V such that 6.(v) # 6,(v) as vectors for any distinct 6, and 6, in {6y, ..., Oy}.

Remark 1. To our knowledge, the only general sufficient condition for Assumption 4 is that V'
contains a nonempty open subset of R¥, and each heterogeneous unobservable § comprises J
multivariate real analytic utility functions u; on this open subset. This requires that v comprise
continuous explanatory variables. Real analytic functions are equal to a power series in a domain
of convergence around each point of evaluation. The Appendix formally defines a real analytic
function and proves that Assumption 4 is implied by the space of real analytic functions. We
do not formally mention real analytic utility functions in Assumption 4 to emphasize that our
identification argument uses no other properties of real analytic functions. Note that the class of
real analytic functions includes polynomials and interaction terms. Even if one restricts attention to
functional forms where random coefficients enter linear indices as in Section 2, our identification
results identify the order of the polynomials and the identity of the interaction terms in the true
data generating process. This contrasts our results with Fox, Kim, Ryan, and Bajari (2012), who
examine the random coefficients logit model and rule out polynomials, including interaction
terms.
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Example. In the simpler example in Section 2, the utility of choice j is vB +€; +r; where
v=(v,...,v,). Letu/(v) = VB + ¢€;. This is a real analytic function in v;, and so Assumption
4 is implied by this functional form. Mathematically, the case of random coefficients entering
linear indices can be seen as a restriction of the space ® from all real analytic utility (in v)
functions to all linear (in v;) utility functions.

Remark 2. In Section 2, we argued that our results allow us to predict demand and do other
counterfactuals for values of v not in the set /" seen in the original data. This is possible when
V' is a strict subset of R and there is a natural extension of each heterogeneous unobservable 6
from the set V" to a superset ¥/ € R¥. For example, multivariate real analytic functions can often
be defined on all of RX. This extension would require restricting © to be the set of multivariate
real analytic functions on R, not just a nonempty open subset of V. Specializing equation (2) to
the multinomial choice model, the data generating process that we identify is

N
. . j J
Pro (/1) =3 w1 [] € argmax { () +7, ). 0” ’

where (N, (6,, wg,))_,) is the identified finite-support representation of the true G(#) and each
support point is 6, = u, = (u!, ..., u;). Therefore, we can evaluate Prg(j | x) at any x = (r, v),
including v ¢ V. This ability to do out-of-sample prediction is not usual for nonparametric meth-
ods because it is possible that two different heterogeneous unobservables 6 behave identically
within 7 but differently outside of V. In this case, identification analysis within V" is not useful
for learning the behavior of consumers outside of V. In this section, the ability to predict behavior
out of V' arises partly because of Assumption 4: different heterogeneous unobservables 8 = u are
required to take different actions within V. Otherwise, two heterogeneous unobservables could be
observationally equivalent within the support /" and there would be no hope of ever identifying
their separate frequencies. This article is about identifying distributions of heterogeneous unob-
servables, so some assumption along the lines of Assumption 4 will be necessary for this to occur
within 7. Remark 1 argues that a sufficient condition for Assumption 4 is real analytic utility
functions. Our results show that a distribution of real analytic utility functions and a distribution
of a finite vector of heterogeneous parameters that enter a parametric real analytic utility function
can be identified within a small, nonempty open set.

Remark 3. Recall that v captures all of the non-r; product characteristics and the argument
to u’/(v) is v, not v,. In the general model, letting the utility to product j also depend on the
characteristics of products k 7 j can capture the idea of context or “menu” effects in consumer
choice. Even if such effects are not economically desirable, there is no cost to us in mathematical
generality and thus we let the whole menu v enter as an argument to each u/. The choice-specific
scalar r;, however, enters preferences in an additively separable way (and hence, preferences are
quasilinear in this scalar characteristic). One example is that »; could be the price of good j, in
which case u/ (v) is the consumer with unobservable heterogeneity 6’s reservation price for product
J, and utilities are better expressed as u/(v) — r;. However, r; could be some nonprice product
characteristic or, with individual data, an interaction of a consumer and product characteristic,
like the geographic distance between a consumer and a store.

Remark 4. Tmplicit in the quasilinear representation of preferences u/(v) 4 r; is the scale nor-
malization that each realization of unobservable heterogeneity 6’s coefficient on r; is constrained
to be 1. The normalization of the coefficient on ; to be %1 is innocuous if each r; enters utility
in the same way for each product; choice rankings are preserved by dividing any heterogeneous
unobservable’s utilities u/(v) + r; by a positive constant. Thus, if 6 admitted a heterogeneous
coefficient o > 0, then 0, = (u, a) would have the exact same preferences as 6, = (@, 1). The
assumption that ; has a sign that is the same for each vector of utility functions 6 is restrictive.
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Such a monotonicity restriction on one covariate will be generally needed to show identification of
the multinomial choice model using the identification machinery for a generic model in Theorem
1. The sign of r; could be taken to be negative instead (as in the case where r; is price), and it is
trivial to extend the results to the case where r;’s sign is unknown and constant a priori.

Theorem 2. Under Assumptions 1, 2, 3, and 4, the distribution G° € G of vectors of utility
functions 0 = u in the multinomial choice model is identified.

Proof. We verify the property in Theorem 1. As in the property, let a finite and arbitrary 7 C ®
be given, where 7 = {0, ..., 6y} and each heterogeneous unobservable 6, = u; is a vector of J
utility functions. We consider /-sets, Definition 1, of the form

1L, =10eT| f((v,r),6) =0},

which is those heterogeneous unobservables 6 € T that pick the outside good 0 at x = (v, 7). To
verify the property in Theorem 1, we will find a x = (v, ) such that /],  is a singleton.

Use the v from Assumption 4. Because the set of vectors {#(v) | 6 € T} is finite, there exists
a vector 6(v) that satisfies our definition of a minimal vector in the following footnote.” There
could be multiple minimal vectors; we focus on one, 8(v) = u(v).

Then, set the vector —» = 6(v). This means that the vector of product-specific utilities

) +r =@ +r,....u'()+r)

is equal to the vector of J 0’s for the heterogeneous unobservable 6. Further, the utility at
x = (v, w) is strictly positive for at least one j > 0 for all heterogeneous unobservables in 7'
other than 6, by our definition of a minimal vector. Now we can find a sufficient small > 0 so
that 7 = r — n and at this x = (v, 7) a consumer with the heterogeneous unobservable 6 strictly
prefers to purchase the outside good 0 and all other heterogeneous unobservables 6; € T — { [ }
purchase an inside good. Thus, /], = {Q } is a singleton and we can apply Theorem 1. |

Given data on product characteristics x and discrete choices y for an infinite number of
consumers, we have proved that only the true distribution of utility functions could have generated
the data. Alternatively, the researcher could have data on market shares across a large number of
markets. We discuss allowing unobservables at both the market and consumer levels in Section 5.

Example. We now discuss how the result in Theorem 2 specializes to the common empirical
specification of random coefficients entering linear indices in utilities from Section 2. The equiv-
alent of Assumption 1 is that v = (v, ..., v,) and r = (v, ..., r,) have continuous support on
a product space (i.e., they all independently vary) and that  has large support. The equivalent of
Assumption 2 is that the heterogeneous unobservable 8 = (8, €, . .., €,) is distributed indepen-
dently of the observable product characteristics x = (v, ). The equivalent of Assumption 3 is that

7 Let S be a set of distinct vectors, each of the form s = (s, ..., s*), meaning that each vector s in S has the same
number M of (real) elements s”. We define a minimal vector s € S of the set S to be a vector s € S such that, for each
s € §— {s}, there exists an element index m(s) such that S5y < Sm(s), Or that there is some element of the other vector
strictly greater than the corresponding element of the minimal vector. A minimal vector may not be unique. For example,
in the set of vectors {(1, 0, 0), (0, 0, 1)}, both vectors in the set are minimal vectors. We now prove that there exists a
minimal vector if S has a finite number of vectors in it. Look at the first element of all the vectors. There is a minimum
value c¢; if there is a unique vector with that minimum value for the first element, then that vector is a minimal vector.
If not, consider the subset of all vectors that is those vectors with the value of ¢ for the first element. Repeat the above
argument for the second element of the vectors in this subset. Form the new subset (of the first subset) of vectors with the
second element equal to the minimum value d of the second elements. If this is a singleton set, then we have a minimum
vector. Otherwise, repeat with the third elements of the vectors in the second subset, and form a third subset. This process
terminates with the last element of the vectors. This process applied to the last element must produce a singleton subset
and a minimum vector. If instead there were multiple vectors in this last stage, then these vectors would be identical by
construction, as at every step their elements were shown to be the same.
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utility to heterogeneous unobservable 6 purchasing product j is v;8 + €, + r;. The equivalent of
Assumption 3 then implies the equivalent of Assumption 4, as v} + €; +r; is real analytic in
v;. Under these assumptions, Theorem 2 implies that the distribution G of @ = (8, €, ..., €,) is
identified in the class of distributions with unknown finite support on R4™® In other words, we
identify

where N is the identified number of support points, 8" = (8", €], ..., €) is the location of the
nth support point, and wy, is the weight on the nth support point.

Remark 5. The proof of Theorem 2 uses only data on the probability of purchasing good 0, the
outside option. Therefore, identification would go through if an agent’s choice was observed to
only be either the outside good or an unspecified inside good, as pointed out in early work on
multinomial choice by Thompson (1989). Each choice-specific regressor r; shifts the value of
only one inside good, allowing identification even if the identity of the particular inside good
purchased is not observed.

O  Purchasing multiple products. The empirical article Liu, Chintagunta, and Zhu (2010)
studies a choice situation where each discrete choice j = 0, ..., J indexes a bundle of composite
choices. For example, a consumer can purchase cable television separately (j = 1), purchase
an Internet connection separately (j = 2), purchase cable television and an Internet connection
together as a bundle (j = 3), or purchase nothing, the outside good (j = 0). The goal in this
situation is to distinguish between explanations for observed joint purchase: are consumers
observed to buy cable television and an Internet connection at the same time because those who
watch lots of television also have a high preference for Internet service, or is there some causal
utility increase from consuming television and Internet service together? The goal is to distinguish
unobserved heterogeneity in preferences for products, which may be correlated across products,
from true complementarities.

In our notation, heterogeneity is just captured by a distribution G(0) that gives positive
correlation between the choice-specific utility functions u'(v), #*(v), and u*(v). True comple-
mentarities are measured by

AW =u’ () — W)+ u’)).

If the utility for choice j is u/(v) — r; and r; is the price of j, then A(v) is the monetary value of
complementarities to the consumer. A(v) > 0 represents a positive benefit from joint consump-
tion. As utility functions are random functions across the population, there is a distribution of
complementarity functions A(v) implied by G(6).

As we have already explored in Theorem 2, we can identify the joint distribution of het-
erogeneous unobservables 8, which means we can identify the distribution of complementarities
as a function of the joint distribution G(0), if prices r; are bundle-specific. That theorem im-
posed no restrictions on the joint distribution of utility functions across (here) distinct bundles.
Therefore, we can apply Theorem 2 if we observe different choice situations where the bundle is
or is not aggressively priced relative to the singleton packages. This is the data scheme for Liu,
Chintagunta, and Zhu (2010): they observe different bundles of telecommunications services at
different prices, across geographic markets.

5. Endogenous product characteristics

B This section explores endogenous product characteristics in the multinomial choice model.
Recalling the discussion of the multinomial choice model in Section 4, an endogeneity problem
arises when a consumer’s preferences as captured by the utility functions u = (u', ..., u”’) are
not distributed independently of some elements of the consumer’s product characteristics (v, 7).
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We will first consider a motivation arising purely from consumer-level unobservables and then
discuss market-level unobservables below.

Endogeneity from consumer-level unobservables could arise if the product characteristics
(v, r) that a consumer faces is partly “designed” on the basis of information related to the
consumer’s vector of utility functions u = (u', ..., u’). A classic example of this source of
endogeneity arises in a principal-consumer relationship, in which the principal designs the menu
of product characteristics (v, r) facing the consumer using information that is correlated with
the consumer’s preferences u but that is not observable by the econometrician. The principal,
here equivalent to a multiproduct monopolist, has incentives (rent extraction) to use all known
information about the consumer to design the menu of product characteristics for the consumer.
Therefore, the endogenous choice of a menu of product characteristics (v, ) by a principal with
some knowledge of u = (u', ..., u”’) will induce a statistical endogeneity problem.

In this section, we show how to address the endogeneity problem posed by endogenous
product characteristics in multinomial choice by way of a system of equations. Essentially, the
system jointly models the decisions of the principal and the consumer, and uses exogenous
variation in the characteristics of the principal-consumer relationship to achieve identification.
We extend the notation from Section 4 to fit the new system of equations into the notation
for a generic economic model in Section 3. Given ¥ € R, v € RX, and r € R”, a consumer
has utility for choice j given by u/(D, v) 4 r;. We let the first M product characteristics facing
the consumer be potentially endogenous, denoting these product characteristics by ¥ € RY. We
label the remaining, known-to-be-exogenous product characteristics v € RX. We also refer to
the possibly endogenous product characteristics ¥ as the principal’s control variables, as they are
strategically set by the principal. A special case of this framework is where M = J and there is
one endogenous control variable per product. We still normalize the outside good’s utility to 0.

We introduce a vector of instruments z = (zy, ..., zy) € Z C R that are stochastically
independent of the vector of utility functions u. In addition, the instruments shift the endogenous
choice characteristics through the principal’s optimal choice of product characteristics, what in
terms of identification is the instrumental variables equation ¥ = A(v, z) forz € Z, v € V, and
h:V xZ—RM,

Let us map this new model in the notation for the generic economic model in Section 3. A
heterogeneous unobservable 6 now corresponds to a pair of vectors of functions 6 = (u, /) con-
sisting of a vector of J utility functions u = (u', ..., u”) and a vector of M instrumental variable
equations & = (h', ..., k™). An observable and statistically exogenous economic environment x
is now x = (v, r, z), a vector comprised of K exogenous product characteristics in the vector v,
J exogenous special regressors in the vector », and M exogenous, excluded instruments in the
vector z.

The model is such that for any statistically exogenous economic environment x = (v, 7, z),
the observed dependent variables are the consumer’s discrete choice j and the principal’s choice
of the endogenous product characteristic 9. In notation,

G0 = f(x,0) = f((v.r.2), (u, 1)) = (argr;gx [{twow.a.w+r) 0} ho, z>) ,

where the principal’s choice of endogenous product characteristics ¥ and the consumer’s choice of
product ; are linked through a recursive system. One can see that a heterogeneous unobservable
0 = (u, h) indexes an entire principal-consumer relationship, where the principal’s function /4
generating endogenous product characteristics is itself heterogeneous due in part to differing
information sets, cost functions, or preferences among principals.

Importantly, the joint distribution G(0) = G(u, h) over heterogeneous unobservables allows
the principal’s vector of functions / to be stochastically dependent with the consumer’s utility
functions u. The principal can condition its policy /# for choosing product characteristics on
information related to the consumer’s preferences u that is unobserved to the econometrician.
The instruments z are most naturally interpreted as ingredients to the marginal costs of providing
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each endogenous product characteristic, although they could represent any observed charac-
teristics of the principal that are excluded from the utilities of consumers, including observed
dimensions of the principal’s information set or any other demographic taste shifters for the
principal.

Remark 6. Our approach to handling endogeneity in the multinomial choice model parallels
the approach in Fox and Gandhi (2011) for the case of continuous outcomes. In that article,
we argue that allowing an infinite dimensional heterogeneous unobservable in the endogenous
product characteristic function / in the system distinguishes this approach from the nonparametric
control function literature, which requires that the unobservable in the endogenous product
characteristic function be invertible (Chesher, 2003; Altonji and Matzkin, 2005; Imbens and
Newey, 2009; Blundell and Matzkin, 2010). Allowing an infinite dimensional unobservable # in
the demand equation distinguishes this approach from the literature on simultaneous equations,
which typically assumes that there is only a scalar unobservable for each product, so that the
unobservables can be uniquely recovered for each statistical observation (Brown, 1983; Roehrig,
1988; Benkard and Berry, 2006; Matzkin, 2008; Berry, Gandhi, and Haile, 2013; Berry and Haile,
2014). In the parametric discrete choice literature, Petrin and Train (2010) is an example of the
control function approach and Berry, Levinsohn, and Pakes (1995) is an example of the inversion
approach. Fox and Gandhi (2011) show that our identification approach can be consistent with
Bertrand-Nash equilibrium.

Remark 7. Each 6, each realization of the unobserved heterogeneity, has its own 4 (v, z) func-
tion. Therefore, in part we seek to identify, through G(6), a distribution of functions /4 for the
endogenous product characteristics, with arguments the exogenous product characteristics v and
excluded instruments z. A special case of our analysis would be when we restrict 4 to be a real
analytic function known up to a finite vector of unobservables, and we allow those unobserv-
ables themselves to be heterogeneous with unknown finite support. In empirical applications, we
believe researchers would assume % is a known function up to a finite vector of heterogeneous
parameters.

Remark 8. We do not allow the special regressors  to be endogenous or enter the endogenous
product characteristic function 4. The »’s could reflect information about consumer and product
characteristics that is unobserved to principals and distributed independently of principals’ cost
functions. Alternatively, the r’s can capture an observable consumer attribute, such as location,
that the seller cannot use as a basis for price discrimination or that does not convey information
on a consumer’s utility function vector u. If we did allow the vector of J r;’s to be endogenous,
we conjecture we would need J special regressors (large support but not a common sign) as
instruments so that the vector » could be “moved around” by the vector of instruments over r’s
large support. Currently, we require the vector of endogenous product characteristics ¥ to move
only locally with instruments.

Remark 9. By assuming that x = (v, r, z) is distributed independently of 6 = (u, h), we are
assuming that the process that matches principals to consumers is exogenous and only product
characteristics are endogenous. Otherwise, consumers with certain unobservable preferences may
be more likely to match with principals with certain observable cost shifters, making z an invalid
instrument. Extending our framework to deal with endogenous matching is an interesting area
for future research. Nevertheless, there are numerous applied settings that fit our current version
of the model. Consider Einav, Jenkins, and Levin (2012), where the principal is a subprime
auto dealer and the the customers exogenously arrive and desire cars with certain characteristics
(v, D, r). The principal can choose contract terms ¥ such as the minimum down payment and
the interest rate for each car j. Consumers have heterogeneous preferences over minimum down
payments and interest rates, perhaps reflecting varying liquidity constraints.
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The formal assumptions for this model follow.

Assumption 5. Let V be a nonempty open subset of R¥.® Let Z also be a nonempty open subset
of RY. Letx = (v,r,2) e X =V xR’ x Z.

Assumption 6. The heterogeneous unobservable 6 = (u, &) is distributed independently of the
observed, exogenous information x = (v, r, z).

We list the following as an assumption to emphasize the quasi-linearity restriction.

Assumption 7. The utility of a consumer with utility functions u = (u', ..., u”’) purchasing
product j is u/(D, v) + ;.

Assumption 8. The space of heterogeneous unobservables ® consists of pairs 0 = (u, #) such
that u and 4 are both vector-valued analytic functions on V' x Z where the derivative matrix
D.h(v, z) of each heterogeneous instrumental variables equation with respect to the instruments
z has full rank M for almost all (in the sense of Lebesgue measure) (v,z) € V x Z.

Note that the derivative D.h(v, z) exists and is continuous in z because /(v, z) is vector-
valued analytic. Such a full rank restriction is a formal way of saying that the instrument z
is a locally powerful instrument almost everywhere. For any heterogeneous unobservable 6 =
(u, h) € ® and fixing v € V and for almost all z € Z, the local variation in 9 induced by the local
variation in z is not restricted to a lower dimensional subspace.

Theorem 3. Under Assumptions 5, 6, 7, and 8, the distribution G° € G of (u, h) € © in the
multinomial choice model with endogenous product characteristics is identified.

Proof. We verify the property in Theorem 1. Take a finite set of types 7 C ® and denote
the elements of 7 by T = {6,, ..., Oy} where each 6, = (u,, h;) (recall that each u; and 4; for
i=1,..., N is avector-valued analytic function by Assumption 8).

Focus on a particular /,, an element of 6,, itself the first element of 7. By Assumption 8, we
can find an open set W C V' x Z that satisfies

(1) h(v,z) # hi(v,z)forall (v,z) € Wandalli =1, ..., N such that s, ## h, (this follows by
properties of analytic functions presented in the Appendix).
(i) D.h (v, z) has full rank for all (v,z) € W.

We can exploit the properties of vector-valued analytic functions again to find (v*, z*) € W
such that u,(¥*, v*) # u (v*, v*) foralli,k =1, ..., N and u; # u;, where v* = h,(v*, z*).°

Let u(9*, z*) be a minimal vector, as defined in a footnote in the proof of Theorem 2, for the
set {u;(0*, %) | h; = h,}. Setr; = —u/(9*, v*)V j. Then, the heterogeneous unobservable (u, /)

has 0 total utility for all choices. Thus,
L0y ey = {w,h)ye T |h(v*,z*) =" andw’ (h(v*,2°),v") +r;, <OVj e{l,...J}}

is a singleton, namely, a set consisting of only (u, #,) € T. ]

¥ All nonempty open sets in RX have positive Lebesgue measure.

° This follows because the mapping (v, z) — (h(v, z), v) is an open mapping over W by the Open Mapping
Theorem. In particular, if we denote this mapping B, we have the matrix of partial derivatives of B is of the form
o= |:Dvh(v,z) Iy

D.h(v,z) 0, ¢
K columns. The matrix / is invertible because D.h(v, z) is invertible. Therefore, by the Open Mapping Theorem,
(v, z) = (h(v, 2), v) is an open mapping. Thus, the image B(W) is an open set in R¥*X and we can always find a point
in an open set that distinguishes two multivariate analytic functions.

], where /i is an identity matrix with K rows and 0, x is a matrix of all 0’s with J rows and
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Unobservables at the market and consumer-levels. A common situation in demand estimation
is that the endogenous regressor is price and price is the same across all consumers in a market.
In this case, a conventional assumption is that the unobservables that are correlated with price
(market-level demand shocks, say) are independent of consumer-level unobservables reflecting
individual heterogeneity. Statistical independence between unobservables is a special case of our
framework, which does not impose such assumptions. Further, in a world with J competing
products, the unobservables reflecting demand and supply for one product may be statistically
dependent with the prices of all products.

To see this notationally, as before let & = (u, &), where now by assumption the function 4
that generates the endogenous price is the same for all consumers in a market. The realized utility
functions u are now statistically dependent with # because the market level price is correlated
with market-level unobservables that enter the otherwise consumer level utility functions. This
type of model can be estimated using either individual data on consumer purchases across markets
or aggregate data on market shares across markets.

6. Nonparametric estimation

B This article’s identification arguments, based on the identification machinery for the generic
economic model in Theorem 1, are not constructive. In other words, the proof of Theorem 1 does
not show how to constructively trace out the distribution of the heterogeneous unobservables.
However, now we argue that our results on identification do fundamentally lead to proving the
consistency of a nonparametric estimator for a distribution of heterogeneous unobservables. Here
we focus on the more empirically relevant case where ®, the space of heterogeneous unob-
servables, is finite dimensional, indeed a subset of the reals. For estimation (not identification),
we require that ® be compact. For a multinomial choice problem, we require that each utility
function u/(v; B;) be known up to finite heterogeneous parameters 8;, where the complete hetero-
geneous unobservable is 6 = 8 = (B, ..., B,), the vector of all choice-specific heterogeneous
parameters.

We use a computationally simple, nonparametric estimator for distributions of heterogeneous
unobservables due to Bajari, Fox, and Ryan (2007), Fox, Kim, Ryan, and Bajari (2011), and Fox,
Kim, and Yang (2015). Return to the generic economic model of Section 3 but now assume the
researcher has data on M observations (y;, x;) for consumersi = 1, ..., M. We wish to estimate
G using this finite sample. First, we discretize the space of dependent variables ) into J categories
Ay, ..., A, Lety;; = 1if observation i’s y; is in the set 4;, and 0 otherwise. For computational
simplicity, in an initial stage we pick a grid of S points 6° € ©. In a finite sample, we then estimate
the weights W, on each grid point 6° via the linear probability model regression

N
v~y A [f (. 0) €] +e, Vel .

s=1
where the approximation sign & indicates that the set of S grids points is chosen for estimation
and may not be the true set of grid points and e; ; is the error term in the linear probability model,
e,; = yi; — Pr(4; | x;), which satisfies E[e; ; | x;] = 0 by the definition of a choice probability.'’
Because the grid points 6° are fixed in estimation, the unknown weights i, in the linear probability
model can be estimated via linear regression, which is computationally quite simple.!' Typically,
one would add the linear inequality constraints @, > 0¥s and 3_° | i, = 1. These ensure that
the estimated weights form a valid probability mass function. The entire computational procedure
is then linear least squares subject to linear inequality and equality constraints. The optimization
problem is globally convex and specialized routines are guaranteed to find the constrained global

12 We use the approximation because the true model is y; ; = Z”\:l we, 1[f(x:,6,) € A;]+ e .
"' There is one regression observation corresponding to each statistical observation i and each discretized
outcome ;.
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minimum of the objective function. The estimate of G(0), the distribution of heterogeneous
unobservables, is then

N

G (0) =Z 16" < 6].

The constraints ensure this estimator is a valid cumulative distribution function.

Example.  Consider the simple multinomial choice example in Section 2. There, x =

(vi,...,v5,r,...,r;) and the heterogeneous unobservable 8 = (8, €, ..., €,). In this case,
A; is simply the choice j and so y; ; equals 1 when y; = j and 0 otherwise. The researcher picks a
grid of S points 6° = (B°, €], ..., €). This grid should be chosen to provide a good approximation

to the true distribution of the additive errors and marginal utilities for the product characteristics.
For each statistical observation 7, there are J regression observations corresponding to the linear
probability model regression equation for each of the J choices. The term 1[ f(x;, 0°) € 4;] just
asks whether the utility of choice j with heterogeneous unobservable 6°, v/ ;B* + €] +r, ;, i
higher than the utility of the other J — 1 inside goods and the outside good. Computatlonally, the
researcher regresses the outcome y, ; on a vector of 1’s and 0’s corresponding to whether each
heterogeneous unobservable 6° would purchase good j at product characteristics x;. This gives
an estimate of the joint distribution of (8, €, ..., €,).

This is a sieve estimator (Chen, 2007). As the sample size M grows, one typically uses
finer grids of S(M) points. Let ®;,,, be the entire grid of points chosen with M observations.
Under conditions on the choice of S(M) and other conditions, the estimator GM(G) converges
to the true G°(9). Let ¥, = (31, ..., y:,) and let P(x, G) = (Pi(x, G), ..., P,(x, G)), where
Pi(x,G)= [1[f(x,0) € 4;,1dG(9). Fox,Kim, and Yang (2015) prove the following consistency
proposition, using our notation.

Proposition 1. Let the following conditions hold.

(i) Let G be a space of distribution functions on ® C R%™®, where © is compact. G contains
the true G°.
(i) Let ((y;, x;)Y, be i.i.d.
(iii) Let 6 be independently distributed from x.
(iv) Assume that G* is identified, meaning that for any G' # G°, G' € G, we have P(%, G°) #
P(x G') for a set of realizations ¥ of the random variable x with pos1t1ve measure.
(v) The population least squares objective function E[|y — P(x, G)||3] is continuous on G in
the weak topology, where ||| ; is the Euclidean norm.
(vi) Let ®¢ become dense in ® as S — oo.
(vil) O3 C Oy, C O forall § > 1.

(viii) S(M) — oo as M — oo and it satisfies S50

— 0as M — oo.
Then, de(GM, G°) 5 0, where d, » is the Lévy-Prokhorov metric on the space of multivari-
ate distributions.

The proposition states that the estimated cumulative distribution function converges to the
true distribution function G° as the sample size gets large, in a particular metric on the space
of distribution functions.'”” Thus, the computationally simple linear regression estimator is a
consistent nonparametric estimator for the distribution of heterogeneous unobservables.

12 The function d;p denotes the Lévy-Prokhorov metric dip(ii, iy), where p, and p, are probability measures
corresponding to the distributions G| and G,. The Lévy-Prokhorov metric is defined as

dip (1, o) = inf{e>0 | w; (C) < wuy (C°) + e and p, (C) <y (C°) + € forall Borel measurable C € ©},
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In Proposition 1, our Theorem 1 has maintained conditions 2 and 3. In this section, we
previously assumed condition 1, compactness. Conditions 6—8 are conditions on the choice of
the grid of points for estimation. Satisfying these conditions is up to the empirical researcher.
Condition 5 always holds if the true support is finite and otherwise can usually be satisfied if
some of the regressors are continuous, as Fox, Kim, and Yang (2015) show in some detail.

In Proposition 1, condition 4 is about identification. It states that the population data are
compatible with only the true distribution of heterogeneous unobservables, G°. This condition is
what this article has been about proving for the multinomial choice model. Identification is the key,
model-specific condition needed to prove that this estimator for the distribution of heterogeneous
unobservables is consistent. If the distribution is not identified, there is no reason to think this
or any other nonparametric estimator for the distribution of heterogeneous unobservables will
be consistent. Thus, the identification arguments in this article lead directly to a computationally
simple, nonparametric estimator for the distribution of heterogeneous unobservables.

Remark 10. The notion of identification in condition 4 of Proposition 1 is slightly stronger than
our notion of identification in Section 3, as our earlier notion requires only one realization X of
x, not a set of realizations X of x with positive measure, where 13()?, G°) #£ 13()?, G'). However,
in the multinomial choice model, there will typically be an open set of x’s where the /-sets /]
are the same for an open ball around any x. In other words, an open set of x’s will have the same
0 € T taking actions in the set 4."® In this case, the stronger notion of identification in condition 4
of Proposition 1 follows from the weaker notion proved, using the sufficient property, in Theorem
1, and hence Theorems 2 and 3 for the multinomial choice model.

Remark 11. We emphasize that the grid of points ®; used in a finite sample for estimation is
not the same as the finite if unknown grid of points that take on positive weight in G°, the true
distribution. For an arbitrary model beyond what we study in this article, Proposition 1 states
that the estimator G, is consistent no matter the true support of G°. The true support could
be continuous, discrete, or mixed discrete and continuous. The main criterion the model needs
to satisfy is identification, as in condition 4 of Proposition 1. In the current article, we show
identification for the multinomial choice model when the true support of G° is indeed finite.
However, Proposition 1 states that this support is learned in estimation as M — oo, and is not
picked by the researcher.

7. Conclusions

B We study identification of the distributions of heterogeneous unobservables, including ran-
dom coefficients, in nonlinear economic models. We focus on the case with cross sectional
data. For a generic nonlinear model with heterogeneous unobservables, we provide some gen-
eral machinery for identification. We then straightforwardly verify that this machinery applies
to the multinomial choice model. Our machinery may be of some independent interest, as it
can presumably be applied to a variety of nonlinear models. The key assumption behind our
identification result is that the support of the heterogeneous unobservables is unknown and finite
in some possibly infinite dimensional space.

We are motivated by applications to demand estimation, where we observe consumers facing
different product characteristics. In particular, we are the first to prove that the distribution of
random coefficients entering linear indices for utilities in a multinomial choice model is identified,
under some model-specific assumptions, including having one regressor for each choice with
large support and a common sign that enters utility additively separably. Our identification result
extends to identifying the distribution of heterogeneity in models with multiple purchases, if each

where C is some set of heterogeneous unobservables and C° = {6 € ® | 30’ € C, d(0’, 0)<e}. The Lévy-Prokhorov
metric is a metric, so that d;p(it1, o) = 0 only when p; = ;.
13 This follows if the utility functions are continuous in x. |
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bundle has a separate price. We can distinguish true complementarities from correlation in the
values for individual products. Our results on multinomial choice also extend to the case where
some regressors are endogenous, either from consumer level- or market-level unobservables.
Our identification results lead directly to showing the consistency of a computationally
simple, nonparametric estimator for the distribution of heterogeneous unobservables. Therefore,
our results are useful for researchers wishing to use flexible specifications in empirical work.

Appendix

This Appendix shows that the space of all real analytic functions satisfies a key property assumed in Assumption 4.

Definition 2. Let X be a nonempty rectangle in R*. A function g : X — R is real analytic if, given any interior point
& € X, there is a power series in x — & that converges to g(x) for all x in some neighborhood U C & of £.

Real analytic functions are infinitely differentiable.

Definition 3. 1f a function g = (gy, ..., g,) : X — R is such that each of its m component functions g; is real analytic,
then g is a vector-valued real analytic function.

A property of the space of real analytic functions is that for any two distinct real analytic functions g, g’ : X — R,
and for any open, connected set C € X, g and g’ cannot agree on the whole of C: there must exist x € C for which
g(x) # g'(x) (Krantz and Parks, 2002). This property can easily be seen to extend to the space of vector-valued real
analytic functions.

Proposition 2. For any finite set of vector-valued real analytic functions {gj, ..., g,} and for any open C C X, there
exists a point x € C such that g;(x) # g;(x) for any distinct g; and g; in {gy, ..., g.}.

Proof. Consider any finite set of vector-valued real analytic functions {gi, ..., g,}. We show by induction on # that the
property holds for any finite number of elements n. The base case n = 2 holds by the above property of scalar-valued real
analytic functions. To see this, for any nonempty, open set C € X, take any nonempty ball within C, which is connected.
Further, the two vector-valued real analytic functions g, and g, differ so they must have a different scalar function in at
least one of the scalar slots of the two vectors. Then, apply the above property of scalar-valued real analytic functions to
this slot of the two vectors and to the nonempty ball within C.

Continuing with the induction, assume that the proposition holds for » — 1, and consider {g,...,g,} and a
nonempty, open set C C X, which, without loss, we can take to be an open ball (C contains such a ball, and balls
are connected). By the induction hypothesis, there exists a point x € C such that g;(x) # g;(x) for any g; # g; and
i,je{l,...,(n— 1)}. By the facts that each g; is continuous and the set of functions is finite, these inequalities are
preserved in a small open ball B; € C around x. Now consider the function g,, and observe that by the result for n = 2,
there exists an x; € B such that g,(x,) # g(x;). Furthermore, by continuity, this inequality is preserved in a small ball
B, C B, containing x;. Now repeat the argument, except comparing g, with g,, producing a ball By C B,, etc. At the
end of the process, a nonempty ball B, € B is produced for which any x € B, satisfies the proposition, that is, x € B,
implies g;(x) # g;(x) for any distinct g; and g; in {gy, ..., g.}. |
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