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Measuring the Efficiency of an FCC Spectrum Auction†

By Jeremy T. Fox and Patrick Bajari*

We propose a method to structurally estimate the deterministic compo-
nent of bidder valuations in FCC spectrum auctions, and apply it to the 
1995–1996 C block auction. We base estimation on a pairwise stabil-
ity condition: two bidders cannot exchange two licenses in a way that 
increases the sum of their valuations. Pairwise stability holds in some 
theoretical models of simultaneous ascending auctions under intimi-
datory collusion and demand reduction. Pairwise stability results in a 
matching game approach to estimation. We find that a system of four 
large regional licenses would raise the allocative efficiency of the C 
block outcome by 48 percent. (JEL D44, D45, H82, L82)

The US Federal Communications Commission (FCC) auctions licenses of radio 
spectrum for mobile phone service, employing an innovative simultaneous 

ascending auction. We study data from the 1995–1996 auction of licenses for the 
C block of the 1900 MHz PCS spectrum band. The C block divided the continental 
United States into 480 small, geographically distinct licenses. A mobile phone car-
rier that holds two geographically adjacent licenses can offer mobile phone users 
a greater contiguous coverage area. One intent of auctioning small licenses is to 
allow bidders, rather than the FCC, to decide where geographic complementari-
ties lie. Bidders can assemble packages of licenses that maximize the benefits from 
geographic complementarities. The US practice of dividing the country into small 
geographic territories differs markedly from European practice, where nationwide 
licenses are often issued. These nationwide licenses ensure that the same provider 
will operate in all markets, so that all geographic complementarities are realized.

Economic theory suggests that the allocation of licenses in a simultaneous 
ascending auction need not be allocatively efficient. Brusco and Lopomo (2002) 
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and Engelbrecht-Wiggans and Kahn (2005) demonstrate that bidders may implicitly 
collude through the threat of bidding wars. For example, a bidder might not add 
an additional license to a package to take advantage of complementarities because 
of threats of higher, retaliatory bids on the bidder’s other licenses. For auctions of 
multiple homogeneous items, Ausubel and Cramton (2002) demonstrate that bid-
ders may find it profitable to unilaterally reduce demand for licenses, similarly to a 
monopolist raising prices and profits by reducing supply. The concern about intimi-
datory collusion and demand reduction in FCC spectrum auctions is well founded. 
Cramton and Schwartz (2000, 2001) show that bidders in the AB block did not 
aggressively compete for licenses and in the later DEF block auction used the trail-
ing digits of their bids to signal rivals not to bid on other licenses.

We provide the first structural estimate of a valuation function in an FCC spectrum 
auction, apart from Hong and Shum (2003). They model bidding for each license as a 
single-unit auction and therefore do not measure complementarities. Our estimator is 
based on the assumption that the allocation of licenses is pairwise stable in matches, 
that is, an exchange of two licenses by winning bidders must not raise the sum of 
the valuations of the two bidders. In our econometric model, bidder valuations are 
a parametric function of license characteristics, bidder characteristics, and bidder 
private values. We use the maximum score or maximum rank correlation estimator 
for matching games introduced in Fox (2010a), where the objective function is the 
number of inequalities that satisfy pairwise stability. Such estimators for single-agent 
choice problems were introduced in Manski (1975) and Han (1987). We estimate the 
influence of various bidder and license characteristics on bidder valuations. Finally, 
we compare the efficiency of the observed and counterfactual allocations of licenses 
and discuss the implications of our estimates for alternative auction designs.

Our estimator is consistent under an econometric version of pairwise stability in 
matches, which we call the rank order property. We first justify the non-econometric 
version of pairwise stability in matches only with references to the experimental 
and theoretical literatures on simultaneous ascending auctions. We then state the 
econometric version of pairwise stability in matches only, the rank order property, 
as an assumption, with the non-econometric version of pairwise stability as informal 
motivation.

There are three justifications of the non-econometric version of pairwise stability. 
In terms of the experimental literature, we use data from experimental simultaneous 
ascending auctions by Banks et al. (2003), where bidder valuations are known and 
show that the outcomes come close to satisfying pairwise stability in matches only.

Second, we analyze the outcomes generated by the equilibria in a simultane-
ous ascending auction discussed by Brusco and Lopomo (2002) and Engelbrecht-
Wiggans and Kahn (2005). In the cases they study, but allowing asymmetric 
bidders and licenses to some extent (as described in our Appendix), the equilibrium 
outcomes satisfy pairwise stability in matches only. In addition, a version of the 
demand reduction model of Ausubel and Cramton (2002) satisfies pairwise stability 
in matches only. The latter result requires straightforward bidding and no comple-
mentarities, as in Milgrom (2000).

Finally, there were few or no swaps of licenses between bidders immediately 
after the auction, even though such swaps were legally permissible and presumably 
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had low transaction costs compared to the license values. Pairwise stability rules 
out bidders finding it profitable to trade licenses (perhaps with monetary transfers), 
and any swapping would be direct evidence against pairwise stability. We note that 
pairwise stability is a weaker condition than allocative efficiency: efficiency implies 
pairwise stability but not the reverse.

We contribute to the literature on spectrum auctions and the empirical analysis of 
multiple unit auctions in several ways. First, we structurally estimate bidder valua-
tion functions in a spectrum auction. The existing empirical literature on FCC spec-
trum auctions is primarily descriptive. McAfee and McMillan (1996) provide an 
early analysis of the AB auction results. Cramton and Schwartz (2000, 2001) report 
evidence of attempts at coordination through bid signaling. Ausubel et al. (1997) 
and Moreton and Spiller (1998) present bid regressions showing evidence for com-
plementarities. The structural approach is useful because it allows the researcher to 
quantitatively measure components of bidder valuations and the efficiency of the 
allocation of licenses, given the identifying assumptions.

Second, our estimator contributes to the literature on the structural estimation of 
multiple-unit auctions. Hortacsu and McAdams (2010); Février, Préget, and Visser 
(2004); Wolak (2007); Chapman, McAdams, and Paarsch (2007); and Kastl (2011) 
study divisible good auctions, like those for electricity and treasury bills. To our 
knowledge, Cantillon and Pesendorfer (2006), who study sealed-bid auctions for 
bus routes under package bidding, is the only other structural paper to study auctions 
of multiple heterogeneous items. In contrast to Cantillon and Pesendorfer, we study 
an ascending auction without package bidding, and we allow for implicit collusion.

All of the above papers specify a model of equilibrium behavior and invert a 
bidder’s first-order condition to recover its valuation. Athey and Haile (2007) and 
Paarsch and Hong (2006) survey studies of single-unit auctions that use this strat-
egy. This first-order-condition approach and other approaches using bid data (such 
as Haile and Tamer 2003) are not possible in our application because bids may be 
poor reflections of valuations under intimidatory collusion. None of the above esti-
mators are consistent in the presence of implicit collusion.

Third, our paper contributes to the literature on structural estimation by allow-
ing for a fixed effects model of unobserved heterogeneity in bidder valuations. In 
previous research, a maintained assumption is that the econometrician observes 
all publicly available information. We expect FCC bidders to have access to bet-
ter information than we do. Our approach allows for license-specific fixed effects 
in valuations. When the first draft of this paper was circulated, the only paper that 
allowed for unobserved heterogeneity was Krasnokutskaya (2011). However, her 
approach and subsequent research rely on bid data, which is not our approach as we 
now explain.

Fourth, previous methods for structural estimation in auctions identify bidder 
valuations from final bids submitted in the auction. Theorists such as Crawford and 
Knoer (1981); Kelso and Crawford (1982); Leonard (1983); Demange, Gale, and 
Sotomayor (1986); Hatfield and Milgrom (2005); Day and Milgrom (2008); and 
Edelman, Ostrovsky, and Schwarz (2007), among others, have pointed out that a 
one-to-many, two-sided matching game is a generalization of an auction of mul-
tiple heterogeneous items. We are the first to use this insight in empirical work. We 
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estimate the deterministic component of valuations as a function of recorded license 
and bidder characteristics, up to a normalization, based on the match between bidder 
characteristics and license characteristics. We do not use bid data in our preferred 
estimator. We demonstrate that a closely-related estimator that uses bid data does 
not yield reasonable estimates of bidder valuations. In part because we do not use 
bid data, we focus on estimating deterministic components of payoffs, namely how 
valuations relate to observed bidder and license characteristics, including the gains 
from geographic complementarities. We do not estimate the distribution of license- 
and bidder-specific private values.

Fifth, the effective size of the choice set for bidders in our application is very 
large. In our application, there are 480 licenses and, as a result, any estimator that 
relies on a direct comparison of the discrete choice between all potential packages 
will be computationally infeasible. Our estimator, based on pairwise stability, cir-
cumvents this computational difficulty.

Sixth, the true data generating process in a simultaneous ascending auction is 
a noncooperative, dynamic game. This game has multiple equilibria, including 
implicitly collusive and competitive equilibria. We base estimation on pairwise sta-
bility, a condition that holds across a set of equilibria in the situations studied in the 
theoretical literature on simultaneous ascending auctions. Pairwise stability may not 
hold across all equilibria and in other contexts, but it facilitates structural estima-
tion for an otherwise intractable dynamic game. Estimation based on this arguably 
weak condition avoids solving for the equilibrium to the dynamic game. Computing 
equilibria would not be possible, given the indeterminacy of the equilibrium, the 
huge state space in a simultaneous ascending auction, and the massive choice set of 
bidders.

Finally, we estimate a two-sided, non-search matching game with transferable 
utility. Dagsvik (2000); Choo and Siow (2006); and Chiappori, Salanié, and Weiss 
(2010) work with logit-based specifications applied mostly to one-to-one match-
ing, or marriage. We use the matching estimator of Fox (2010a).1 An FCC bidder 
can win more than one license, and we focus on complementarities. We are the first 
paper to estimate a many-to-one matching game where the payoffs of bidders are not 
additively separable across licenses (unlike, say, Sørensen 2007).

We find mixed evidence concerning the efficiency of the observed allocation of 
the licenses. At least since Coase (1959), the use of spectrum auctions has been jus-
tified on efficiency grounds. We find that bidders strongly value complementarities 
between licenses and that bidders with larger initial eligibilities value licenses more. 
We also find that awarding each license to a distinct bidder would reduce allocative 
efficiency, justifying spectrum auctions as efficiency enhancing in comparison with 
the prior lotteries regime. However, we find evidence that the observed packages 
of licenses were too small for an efficient allocation given the complementarities 
between licenses. Indeed, we estimate that dividing the continental United States 
into four, large regional licenses, assortatively matched to the four largest winning 
bidders, would have raised the allocative efficiency of the C block by 48 percent, 

1 The empirical application in Fox (2010a) was added after the paper was initially circulated. Subsequent uses 
of the estimator in Fox also postdate early versions of our paper.
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compared to the actual outcome. Our findings suggest that small license territories, 
together with the possibility of intimidatory collusion, can generate an inefficient 
allocation of licenses. We briefly discuss more specific policy implications.

I.  Background for the C Block Auction

A. FCC Spectrum Auctions for Mobile Phones

Wireless phones transmit on the publicly-owned radio spectrum. In order to pre-
vent interference from multiple radio transmissions on the same frequency, the FCC 
issues spectrum users licenses to transmit on specified frequencies.

There were three initial auctions of mobile phone spectrum between 1995 and 
1997. The first auction (the AB blocks) sold 99 licenses for 30 MHz of spectrum 
for 51 large geographic regions and raised $7.0 billion for the US Treasury. The 
second auction (the C block) sold 493 30 MHz licenses in more narrowly-defined 
geographic regions to smaller bidders that met certain eligibility criteria. The C 
block auction closed with winning bids totaling $10.1 billion, although some bid-
ders were unable to make payments, and their licenses were later re-auctioned. The 
third auction (the DEF blocks) sold three licenses for 10 MHz in each of the same 
493 markets as the C block. The bids totaled $2.5 billion in the DEF blocks.

There are a number of reasons to prefer to use data from the C block auction 
instead of the AB or DEF blocks. First, the number of observations is much larger 
in the C block: there are 255 bidders in the C block compared to only 30 in the AB 
blocks and 155 in the DEF blocks. Furthermore, there were two licenses for sale for 
every geographic region in the AB blocks, and three licenses for every geographic 
region in the DEF blocks. An AB or DEF block winning bidder was thus guaranteed 
to be competing directly against at least one other winning carrier after the auction 
ended. This direct externality in the valuations of bidders complicates the analysis 
of bidding behavior. In the C block, each geographic region had only one license 
for sale.

The C block auction took 184 rounds, lasting from December 1995 to April 1996. 
Incumbent carriers did not participate in the C block because of discounts offered 
to small businesses. Figure 1 is a map of the licenses won by the top 12 winning 
bidders. The largest winner in the C block auction was NextWave, whose winning 
bids totaled $4.2 billion for 56 licenses, including close to $1 billion for the New 
York City license.

B. After the Auction: Mergers

C block bidders were given an extended payment plan of ten years. Many of 
the bidders planned to secure outside funding for both their license bids and other 
carrier startup costs after the auction. Many C block winners were unable to meet 
their financial obligations to the FCC. These new carriers were unable to secure 
enough outside funding to both operate a mobile phone company and pay back the 
FCC. Many C block winners returned their licenses to the FCC, where they were 
re-auctioned. Others companies merged with larger carriers (forming a large part 
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of the licenses held by T-Mobile USA, for example) or were able to protect their 
licenses in bankruptcy court. NextWave is the most famous case of bankruptcy pro-
tection; later it settled with the FCC and sold some of its licenses to other carriers for 
billions of dollars. Ex post, the C block bidders, who were accused of bidding too 
aggressively at the time, underpredicted the eventual market value of the licenses. 
However, much of this value was to larger carriers, not small-business entrants who 
could not secure the financing to operate as a mobile phone carrier. In 2011, only 
a few C block winners, such as GWI/MetroPCS, remain true independent carriers 
marketing service under their own brand.

The merger activity suggests that a bidder’s post-auction value for winning 
licenses was not only a function of the package of territories it planned to serve as a 
mobile phone carrier. Valuations might be a function of the bidder’s beliefs about the 
expected value from resale of its licenses, from mergers after the auction and from 
the risk of bankruptcy. Valuations also likely reflect the ability to serve traveling cus-
tomers through roaming agreements as well as to sign up new subscribers directly. 
Therefore, we favor an interpretation of the estimates from our structural model that 
encompasses all these possibilities.

C. Auction Rules and Bidder Characteristics

FCC spectrum auctions are simultaneous, ascending-bid, multiple-round auc-
tions that can take more than a hundred days to complete. A simultaneous ascending 
auction is a dynamic game with incomplete information. Each auction lasts multiple 
rounds, where in each round all licenses are available for bidding. A bidder can 
remain silent or enter bids to raise the standing high bids on one or several licenses. 
During a round, bidding on all licenses closes at the same time. The auction ends 

NextWave (56)
DCCX PCS (39)
Omnipoint (18)
BD PCS (17)
21st Cent Telesis (17)
GWI PCS (14)
PCS 2000 (13)
Wireless PCS (13)
Cook Inlet (13)
Aer Force (12)
Devon Mobile (12)
MCG PCS (12)
Single License Owners

Ownership

Figure 1. Map of the Licenses Won by the Top 12 Winning Bidders and Bidders Who Won 
Only One License
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when no more bids are placed on any item; bidding on all items remains possible 
until the end. These auction rules were designed to allow bidders to assemble pack-
ages exhibiting complementarities, while letting the bidders themselves and not the 
FCC determine where the true complementarities lie. If bidders have finite valua-
tions, they will cease bidding after a finite number of rounds, although the length of 
the auction is not known at the start. Package bidding is not allowed; bidders place 
bids on each license separately.

Each bidder makes a payment before the auction begins for initial eligibility. A 
bidder’s eligibility is expressed in units of total population. A bidder cannot bid on 
a package of licenses that exceeds the bidder’s eligibility. For example, a bidder 
who pays to be eligible for 100 million people cannot bid on licenses that together 
contain more than 100 million residents. Eligibility cannot be increased after the 
auction starts. During the auction, the eligibility of bidders that do not make enough 
bids is reduced. By the close of the auction, many bidders are only eligible for a 
population equal to the population of their winning licenses.

The eligibility payments were 1.5 cents per MHz-individual in a hypothetical 
license for the C block. These payments are trivial compared to the closing auction 
prices. We use eligibility to control for a bidder’s willingness to devote financial 
resources towards winning spectrum. This paper does not model strategic motives 
(such as intimidating rivals) for choosing eligibility levels. Such motives could break 
our assumed monotone relationship between a bidder’s true valuation for licenses 
and its eligibility, which will make our estimates inconsistent.

Table 1 lists characteristics of the 85 winning and 170 non-winning bidders in 
the continental United States. The average winning bidder paid fees to be eligible 
to bid on licenses covering 11 million people, while the average losing bidder was 
eligible to bid on licenses covering only 5 million people. Bidders also had to submit 
financial disclosure forms (the FCC’s Form 175) in order to qualify as entrepreneurs 
for the C block, which was limited to new entrants. Table 1 shows that the financial 
characteristics of winners and nonwinners were similar, which leads us to believe 
that these disclosure forms did not represent the true resources of bidders. Hence, in 
our structural estimator, we use initial eligibility as an individual bidder characteris-
tic instead of assets or revenues.

Table 1 lists the mean number of licenses bid on and won by winners and non-
winners. The mean winning bidder won 6 licenses and entered at least one bid on 

Table 1—Characteristics of Winners and Nonwinners of Packages 
in the Continental United States

Winners Nonwinners

Characteristic Mean SD Mean SD

Initial eligibility (millions of residents) 10.7 28.5 4.69 17.4
Revenues ($ millions) 12.8 21.7 12.4 18.8
Assets ($ millions) 39.6 67.7 40.4 72.4
Number of licenses won 5.65 7.95 0 0
Number of licenses ever bid on 40.2 73.9 13.9 41.0
Number of bidders 85 170
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40 licenses, compared to bidding on 14 licenses for nonwinners. Although not listed 
in the table, the top 15 winning bidders were active bidders on many licenses. The 
top 15 winners won an average of 18 licenses and bid on an average of 118 (out of 
480) licenses. Most of the major winners and some of the nonwinners were investors 
operating on a national scale.

D. Prices and Winning Packages

The C block auction generated closing bids where the underlying characteristics 
of licenses explain much of the variation in prices across licenses. The most impor-
tant characteristic of a license is the number of people living in it, who represent 
potential subscribers to mobile phone service. The population-weighted mean of 
the winning prices per resident is $40. The second most important characteristic 
in determining the closing prices is population density. Spectrum capacity is more 
likely to be binding in more densely populated areas. A regression of a license’s win-
ning price divided by its population on its population density gives an ​R​2​ of 0.33.2 
However, prices per resident varied widely across the AB, C, and DEF auctions. It 
is difficult to reconcile this across-auction variation with a view that the final bids 
closely reflect bidder valuations (Ausubel et al. 1997).

In the C block, the average winning bidder agreed to pay $116 million and won a 
package covering 2.9 million people. The largest winner, NextWave, bid $4.2 billion 
for a package covering 94 million people.

Figure 2 plots the log of a bidder’s initial eligibility on the horizontal axis, and 
the log of the package’s winning population on the vertical axis. A 45 degree line 
is also included; all observations lie beneath the line because a bidder cannot win 

2 Ausubel et al. (1997) use proprietary consulting data on the population density of the expected build-out areas 
for C block mobile phone service. They have provided us the same data, which we use here.

Figure 2. Log of a Winning Package’s Population and the Log of the Winning Bidder’s 
Initial Eligibility
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more than its initial eligibility. Eight winning bidders appear to be constrained; we 
will impose such eligibility constraints in our estimator later in the paper. The ​R​2​ of 
a quadratic fit of the log of winning population to the log of initial eligibility is quite 
high, at 0.70. Initial eligibility is predictive of acquired spectrum.

E. Suggestive Evidence on Complementarities

A major justification for the simultaneous ascending auction is that it allows bid-
ders to assemble packages of nearby licenses. Such adjacent licenses are said to 
exhibit complementarities or synergies. Bajari, Fox, and Ryan (2008) use data on 
calling plan choice to estimate that consumers do have high willingnesses to pay to 
avoid roaming surcharges while traveling. So there is evidence that economic primi-
tives do justify complementarities in bidders’ structural valuation functions.

One’s prior might be that complementarities are not important in the spectrum 
auctions. The FCC chose market boundaries to be in sparsely settled areas in order 
to minimize complementarities across markets. Furthermore, 1900 MHz PCS wire-
less phone service is mainly deployed in urban areas and along major highways, so 
there might not even be PCS service along the boundaries of two markets. Finally, 
companies can coordinate with contracts (roaming agreements) if the same com-
pany does not own the adjacent licenses.

However, an initial inspection of our data is compatible with the existence of geo-
graphic complementarities. The map of the top 12 winners in Figure 1 shows several 
bidders win licenses in markets adjacent to each other. For example, NextWave, the 
largest winner, purchases clumps of adjacent licenses in different areas of the coun-
try. GWI/MetroPCS fits the cluster pattern well, winning licenses in the greater San 
Francisco, Atlanta, and Miami areas.

On the other hand, the majority of winning bidders win only a few licenses. 
Figure 1 emphasizes this by also plotting the 26 licenses in the continental United 
States that were the only license won by their winning bidders. Only 20 out of 85 C 
block winning bidders won packages of licenses where the population in adjacent 
licenses within the package was more than 1 million. Aer Force is the prime exam-
ple of a top 12 bidder that did not seem overly concerned with complementarities. 
Figure 1 shows that Aer Force won 12 licenses, but that none of them are adjacent to 
each other. From the maps alone, it appears some winning bidders cared more about 
geographic complementarities than others.

Previous researchers have generally concluded that complementarities were 
important. Ausubel et al. (1997) and Moreton and Spiller (1998) examine whether 
adjacent licenses exhibited complementarities by regressing the log of winning 
bids on market and bidder characteristics. Ausubel et al. (1997) study the AB 
and C block auctions and find that the log of winning bids are positively related 
to whether the runner-up bidders won adjacent licenses, as one might expect in 
an ascending-bid auction. However, the coefficient in the C block auction is eco-
nomically small, meaning that prices do not seem to strongly reflect any value of 
complementarities. Moreton and Spiller (1998) have better measures of incum-
bency and also find that winning bids are positively related to the runner-up bid-
der’s measures of complementarities.
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The previous authors also discuss scale economies, the notion that a wireless 
network involves fixed costs that can be spread out among more customers in a 
larger carrier. Scale economies can be represented by valuations convex in the total 
population of a package. However, because bidders with higher valuations (empiri-
cally, higher initial eligibilities) win packages with higher populations, it may be 
hard to empirically distinguish operating scale economies from heterogeneities in 
bidder valuations.

Figure 1 suggests that the clusters of nearby licenses in winning packages are 
possibly too small. If bidder valuations were primarily a function of comple-
mentarities, we might expect to see the entire southeast won by one bidder, for 
example.

The fact that many bidders win clusters of licenses suggests that complementari-
ties matter to some degree. An alternative explanation is that a bidder has correlated 
license-specific values across licenses in a geographic cluster. There seems to be 
little scope for distinguishing between the two explanations in a spectrum auction 
setting. Gentzkow (2007) discusses the difficulties of distinguishing true comple-
mentarities from correlated preferences in a consumer demand setting. We assume 
away spatially correlated, license-specific private values and focus on complemen-
tarities because the evidence suggests that the largest winners were not local busi-
nessmen with special attachments to particular, large regions. Many of the largest 
winners, such as NextWave, Omnipoint, and GWI/MetroPCS, won small clusters 
in many regions of the country. MetroPCS has its headquarters in Dallas, but won 
licenses only near Atlanta, Miami, and San Francisco. DCR/Pocket won licenses 
stretching from Detroit to Dallas, an oddly-shaped region to be a regional specialist 
in. PCS2000 won mainly a cluster of licenses in the West, but its headquarters was 
far away in Puerto Rico. This discussion does not rule out that these bidders have 
spatially correlated license-specific values, but it suggests that such an explanation 
is not more likely than complementarities.

We do not view the price regressions of Ausubel et al. (1997) and Moreton and 
Spiller (1998) as a consistent estimator of bidder valuations, for at least two reasons. 
First, the auction induces an econometric selection problem in the final allocation 
of licenses to bidders. Winning packages have high payoffs for observed or unob-
served reasons; otherwise they would not win. As both bidder- and license-specific 
valuations and complementarities across licenses contribute to total payoffs, those 
packages with relatively low complementarities will have relatively high bidder- 
and license-specific valuations. As the bidder- and license-specific valuations are 
typically not observed and are related to the error term in the price regression, there 
will be correlation between the complementary proxies and the error terms in the 
price regression. Linear regression will thus be inconsistent.

Even if winning packages’ complementarities were somehow uncorrelated with 
winning packages’ bidder- and license-specific valuations, the estimator would still 
be inconsistent. Under intimidatory collusion, as discussed in Section IF, prices will 
not reflect valuations and so price regressions will not identify structural parame-
ters. In order to interpret price regressions as estimates of structural parameters, one 
would need to assume that the outcome to the auction is equivalent to a competitive 
equilibrium to the underlying economy.
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F. Suggestive Evidence about Intimidatory Collusion

Milgrom (2000, theorems 2,3) proves that a simultaneous ascending auction is 
equivalent to a tatonnement process that finds a competitive equilibrium of the econ-
omy, under two assumptions: (i) the licenses are mutual substitutes for all bidders, 
and (ii) all bidders bid straightforwardly. Unfortunately, neither of the assumptions 
needed to prove that a simultaneous ascending auction finds a competitive equilib-
rium appear to hold in the C block data. We have already discussed evidence that 
there may be complementarities in bidders’ valuations.

Bidding straightforwardly means that a bidder submits new bids each period in 
order to maximize its structural profit function, rather than some other continuation 
value in a dynamic game. One violation of straightforward bidding is jump bidding. 
When making a jump bid, a bidder enters a bid that exceeds the FCC’s minimum 
bid for that license and round. We define a jump bid to be any bid that is 2.5 percent 
greater than the minimum bid. Figure 3 shows that there was a non-trivial level of 
jump bidding during the C block auction.

When jump bidding, a bidder risks the chance that the jump bid will exceed 
the valuation of rival bidders and be the final price. A jump bidder therefore has a 
nonzero probability of overpaying for a license. However, there are possible strate-
gic advantages from jump bidding. In a single unit, affiliated values model, Avery 
(1998) demonstrates that jump bidding may signal the jump bidder’s intentions to 
bid aggressively throughout the auction. Because other bidders fear the winner’s 
curse or if bidding is costly, they may stop bidding in order to avoid overpaying 
conditional on winning the item.

Figure 3 shows jump bidding was prevalent towards the beginning of the auction, 
where the risk of overpaying is much lower. Jump bids might represent signals that 
are attempts at intimidation, but jump bids are not evidence the signals caused other 
bidders to withdraw. There are anecdotes of actual retaliation. In round 3, Pocket 

Figure 3. The Number of Jump Bids per Round
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(DCR) placed a large jump bid of 60 percent more than the minimum for Las Vegas. 
In round 70, MetroPCS (GWI) outbid Pocket for Las Vegas and PCS2000 for Reno. 
In round 71, Pocket outbid MetroPCS on Reno and Salt Lake City, the only time 
Pocket bid on either of those licenses. Further, PCS2000 outbid MetroPCS on Las 
Vegas, the only time since round 12 that PCS2000 had bid on Las Vegas. In round 
72, after seeming to retaliate against MetroPCS, Pocket enters the winning bid for 
Las Vegas, meaning the bid stands until the end of the auction at round 184.

There are other instances of intimidation that do not involve jump bids. Towards 
the end of the auction, NextWave and Aer Force were competing for Fredericksburg, 
VA. NextWave needed Fredericksburg to complete a regional cluster around 
Washington, DC. In round 162, NextWave outbid Aer Force for Fredericksburg. In 
round 163, Aer Force responded not only by bidding on Fredericksburg but also by 
bidding on Lakeland, FL. Lakeland is a small population territory that Aer Force 
had not bid on in a long while and that NextWave had been winning. In round 164, 
NextWave bid again and retook Lakeland, but never bid again on Fredericksburg. 
By challenging Aer Force on Fredericksburg, NextWave only succeeded in paying 
10 percent (two bid increments) more to win Lakeland.

Cramton and Schwartz (2000, 2001) provide examples of signaling and implicit 
collusion through intimidation in the auctions for the AB and DEF blocks. We feel 
the evidence is strong enough that any estimation method for simultaneous ascend-
ing auction data must be based on conditions that hold in the presence of this type 
of implicitly collusive behavior.

II.  Valuation Functions

A. Bidders’ Valuation Functions

We now introduce the components of a bidder’s profit function. There are 
a = 1, … , N bidders and j = 1, … , L licenses for sale. We will abuse notation and let 
N be the set of all bidders and L the set of all licenses. Our environment is a multiple-
unit auction where bidders may win a package of licenses. We let J ⊂ L denote such 
a package of licenses. In the C block, the licenses are permits to transmit mobile 
phone signals in specified geographic territories and there is only one license per 
territory. There were N = 255 registered bidders in the C block and 493 licenses for 
sale. We will limit attention to the L = 480 licenses for sale in the continental United 
States and mostly to the H = 85 winning bidders in the continental United States.

Bidder a maximizes its profit

	​ π​a​(J ) − ​∑ 
j∈J

 ​ 
 

  ​ ​p​j​​

from winning package J at prices ( ​p​j​​)​j∈J​. Bidder a’s profit is comprised of two parts. 
The term ​π​a​(J ) is a’s valuation for the package of licenses J and ​∑ j∈J​ 

 
  ​ ​p​j​​ is the price 

that a pays for this package. In our application, we will parameterize the valuation  ​
π​a​(J ) as

(1)	​ π​a​​( J )​ = ​​
_
 π​​β​ (​w​a​, ​x​J​) + ​∑ 

j∈J
 ​ 

 

  ​ ​ξ​j​​ + ​∑ 
j∈J

 ​ 
 
  ​ ​ϵ​a,  j​​ .
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The function ​​
_
 π​​β​ (​w​a​, ​x​J​) takes as arguments the characteristics ​w​a​ of bidder a and the 

characteristics ​x​J​ of the package of licenses J. The function ​​
_
 π​​β​ is parameterized by a 

finite vector of parameters β. Later β will be the object of estimation. The term ​ξ​j​ is 
a fixed effect for license j and ​ϵ​a,   j​ is a private value specific to license j and bidder a. 
The fixed effect ​ξ​j​ captures the common element to the valuation of the license, such 
as the base contribution of population, the fact that spectrum is more scarce in more 
densely-populated territories and the fact that competition from incumbent carriers 
may be stronger in some territories than others. Let ​y​j​ be the vector of observed char-
acteristics of license j. The characteristics ​x​J​ of a package J are formed by ​x​J​ = ζ(Y ) 
from the J < ∞ license characteristics in Y = (​y​1​, … , ​y​J​). The function ζ is known 
to the researcher.

In our application, we let ​w​a​ = eli​g​a​ be the initial (before the auction begins) 
eligibility of bidder a. We treat ​w​a​ as economically exogenous, in that firms do not 
choose ​w​a​ for strategic reasons, such as intimidating rivals. We also assume that ​w​a​ 
is strictly monotone in the true preferences of bidders for spectrum; we do not allow 
unobserved bidder characteristics that affect the valuations of all licenses.

For license characteristics, let

	​ x​J​ = ​( ​​( po​p​j​ )​​ j=1​ J
  ​, complem​.​J​ )​

be equal to the population of all licenses in the package J, as well as a vector 
complem​.​J​ of proxies for the complementarities in the package. Our choice of 
​​
_
 π​​β​(​w​a​, ​x​J​) is

(2)	​​ _ π​​β​(​w​ a​ ,​ x​J​) =  ± 1 · eli​g​a​ ·  ​(  ​∑ 
j∈J

 ​ 
 

  ​ p​o​p​j​ )​ + ​β ′​complem​.​J​.

The interaction eli​g​a​ · ​( ​∑ j∈J​ 
 
  ​ p​o​p​j​ )​ captures the fact, in Table 1 and Figure 2, that 

bidders with more initial eligibility win more licenses. We use ​w​a​ = eli​g​a​ as our 
main measure of bidder characteristics, given that Table 1 shows financial measures 
are uncorrelated with winning a license. The coefficient on eli​g​a​​( ​∑ j∈J​ 

 
  ​ p​o​p​j​ )​ has 

been normalized to ±1, because dividing both sides of an inequality that is used 
in estimation by a positive constant will not change the inequality. Overall, the 
term eli​g​a​ · ​( ​∑ j∈J​ 

 
  ​ p​o​p​j​ )​ captures assortative matching between bidders with higher 

values and packages of licenses with more population.
The term ​β ′​complem​.​J​ provides the total contribution of the several complemen-

tarity measures in the vector complem​.​J​. Each element of complem​.​J​ is a nonlinear 
construction from the characteristics of the underlying licenses in the package J. 
The parameters β describe the relative importance of each complementarity mea-
sure in terms of the units of eli​g​a​ · ​( ​∑ j∈J​ 

 
  ​ p​o​p​j​ )​. Overall, the term ​β  ′​complem​.​J​ cap-

tures one-sided matching between related licenses into the same packages.
In terms of units, eligibility is the initial eligibility of a bidder. Population is just 

the number of residents (in the 1990 census) of the license. To aid interpretation, 
we divide both measures by the population of the continental United States, so that 
an eligibility or population of 1 corresponds to a true value of 253 million people. 
With this normalization, the mean population ​∑ j∈J​ 

 
  ​ p​o​p​j​ among the 85 winning  
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packages is 0.012 (standard deviation of 0.044), and the mean eli​g​a​​( ​∑ j∈J​ 
 
  ​ p​o​p​j​ )​ 

is 0.0046 (standard deviation 0.030). We discuss the measures of geographic com-
plementarities below.

We choose a simple functional form for ​​
_
 π​​β​ ​( ​w​a​ , ​x​J​ )​ in order to demonstrate that 

a parsimonious model can satisfy a high percentage of the inequalities introduced 
below. A more complicated functional form would have little benefit in terms of the 
overall fraction of inequalities that are satisfied and would obscure the interpreta-
tion of the parameters. As we do not have profit, cost, pricing, sales, and merger 
profits data for firms operating mobile phone carriers as a function of their coverage 
areas, we cannot decompose ​​

_
 π​​β​ ​( ​w​a​ , ​x​J​ )​ into the present discounted values of sales, 

marginal costs, per-period fixed costs, one-time fixed costs, and profits from merger 
activity.

B. Assumptions

We now list a series of assumptions. These assumptions are made to clarify the 
informational structure of the simultaneous ascending auction. They will be refer-
enced in a series of remarks about the robustness of the theoretical results of Brusco 
and Lopomo (2002) and Engelbrecht-Wiggans and Kahn (2005), in Appendix A. 
We first present assumptions about the bidder characteristics ​w​a​.

Assumption 1: The scalar bidder heterogeneity ​w​a​ is public information. 
Further, ​​

_
 π​​β​ ​( ​w​a​ , ​x​J​ )​ = ​h​β​(​w​a​) · ​​

_
 π​​ β​ 1
 ​(​x​J​) + ​​_ π​​ β​ 2

 ​(​x​J​), where ​h​β​​( · )​ is a monotone function, 
and ​​

_
 π​​ β​ 1
 ​ and ​​_ π​​ β​ 2

 ​ are unrestricted functions of ​x​J​. Each ​w​a​ is in the data.

Making ​w​a​ private information simplifies some of the analysis below, as 
Remark 2 in the Appendix argues. A private ​w​a​ induces ex post asymmetry in the 
values of licenses; a bidder with a high preference for license ​j​1​ will often prefer 
license ​j​2​ more as well. Privately observed values is the natural case to start with 
in developing an estimator for simultaneous ascending auctions of multiple het-
erogeneous items under implicit collusion. A private ​w​a​ also tracks the theoretical 
assumptions in the papers Brusco and Lopomo (2002) and Engelbrecht-Wiggans 
and Kahn (2005).

The assumption of private information is inaccurate for the C block because ​w​a​ is 
in the data and was disclosed prior to the auction. Instead, we allow ​w​a​ to be com-
monly observed information. A model where ​w​a​ is public information is a model 
with bidders with known asymmetries. See Remarks 2, 6, and 7 in the Appendix A 
for discussion about the need for Assumption 1, which relates to implicit collusion 
in particular models. Note that regardless of whether ​w​a​ is private information or 
public information, ​w​a​ is a private value in the sense of Milgrom and Weber (1982), 
given that rival bidders would not update their own valuations if they learned the 
value ​w​a​. We next turn to the ​ξ​j​ terms.

Assumption 2: The term ​ξ​j​ is a license j fixed effect, which we assume is publicly 
observed by the bidders. ​ξ​j​ may be statistically dependent with ​y​j​ and hence ​x​J​, for 
j ∈ J. Each ​ξ​j​ is not in the data.
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The fixed effect enters bidders’ valuations additively and is meant to capture 
the characteristics of license j that are observed by the bidders, but not by the 
econometrician. For example, we lack controls for the incumbent mobile phone 
companies as well as the winners of the earlier AB auctions and potential merger 
and roaming partners. As is standard in fixed effect models, we cannot identify the 
effects of elements of ​x​J​ that are collinear with the fixed effects ​ξ​j​. We can, how-
ever, identify β in ​​

_
 π​​β​(​w​a​, ​x​J​), which captures the interaction between the bidder 

and license characteristics observed by the econometrician. We will not estimate 
the fixed effects or their distribution, but our estimator is consistent in their pres-
ence. Our estimator will be inconsistent if the bidder heterogeneity ​w​a​ interacts 
with the fixed effects ​ξ​j​.

The unobservables, ​ϵ​a,  j​  , reflect bidder a’s private information about license j. We 
use the framework of independent private values for the ​ϵ​a,  j​ term (any correlation 
occurs through ​w​a​).

Assumption 3: The ​ϵ​a,  j​ are i.i.d. across bidders and licenses and are independent 
of all w’s, x’s, and ξ’s. Each ​ϵ​a,  j​ is privately observed by bidder a, but the distribu-
tion of ​ϵ​a,  j​ is common knowledge among the bidders. Each ​ϵ​a  , j​ is not in the data.

These reflect bidder-specific costs and benefits from operating in a particular 
territory. As we discuss, our maximum rank correlation estimation approach will 
not allow us to identify the distribution of the ​ϵ​a,  j​  s. For the C block, the trade 
press and the number of licenses bid on by each bidder suggest that many win-
ning bidders were willing to operate in any region of the country. This suggests 
the variance of ​ϵ​a,  j​ is small. A small variance of ​ϵ​a,  j​ contrasts with the AB blocks, 
where many bidders were incumbents trying to win territories near their exist-
ing service areas. In Section IE, we acknowledge that there is no obvious way 
to use data from a simultaneous ascending auction to distinguish true comple-
mentarities from spatially correlated ​ϵ​a,  j​  s. Other sources of differential values 
across bidders and across licenses occur through the observable w s and x s and 
the unobservable ξ  s.

The theoretical literature on the simultaneous ascending auction uses the 
assumption of private values. Under private values, bidders would not revise 
their own valuations if they were to observe the private information of rivals. 
For the C block, there is some evidence that some bidders stuck to their private 
evaluations of the value of wireless service and did not update their valuations. 
The bidder with the second-highest initial eligibility won no licenses because 
the prices exceeded that bidder’s evaluation of the profit potential from wireless 
services.

In a common values model, ​ξ​j​ might be unobserved to the bidders as well. If a 
bidder was able to learn ​ξ​j​, it would revise its valuations. Again, common values are 
usually not part of formal models of spectrum auctions because of technical com-
plexity. As Hong and Shum (2003) argue empirically for the AB blocks, at the end 
of the auction a lot of information about ​ξ​ j​ has been disclosed, possibly mitigating 
any winner’s curse. However, this conclusion is less obvious under implicit collu-
sion, where the link between bids and true values is imperfect.



Vol. 5 No. 1� 115fox and bajari: spectrum auctions

C. Three Proxies for Potential Complementarities

We construct proxies for geographic economies of scope and use them as our 
measure of complementarities in (2). Table 2 presents descriptive statistics as well 
as the correlation matrix for the three measures. The measures are highly but not 
perfectly correlated with each other. For all geographic complementarity proxies, 
some fraction of the winning packages has a value of 0. For example, 26 out of the 
85 winning packages contain only one license in the continental United States.

Geographic Distance.—Our first proxy for geographic scope is based on the geo-
graphic distance between pairs of licenses within a package. We measure distance 
between two licenses using the population-weighted centroid of each license.3 For a 
package J in the set L of all licenses, potential complementarities are

(3)	 geocomplem​.​J​ = ​∑ 
i∈J

 ​ 
 

  ​ p​o​p​i​ ​ 
​( ​∑ j∈J, j≠i​ 

 
  ​ ​ 

po​p​i​ po​p​j​
 _ 

dis​t​ i, j​ δ ​
  ​​ )​
  __  

​( ​∑ j∈L,  j≠i​ 
 
  ​ ​ 

po​p​i​ po​p​j​
 _ 

dis​t​ i,   j​ δ ​
  ​​ )​

 ​ ,

where population is measured in fractions of the US total population and distance is 
measured in kilometers.4 The distance, dis​t​i, j​, between licenses i and j is, in our first 

3 The population-weighted centroid is calculated using a rasterized smoothing procedure using county-level 
population data from the US Census Bureau.

4 This geographic complementarity proxy can be motivated as follows. Consider a mobile phone user in a home 
market i. That mobile phone user potentially wants to use his phone in all other markets. He is more likely to use 
his phone if there are more people to visit, so his visit rate is increasing in the population of the other license, j. 
The user is less likely to visit j if j is far from his home market i, so we divide by the distance between i and j. We 
care about all users equally, so we multiply the representative user in i’s travel experience by the population of i.

Table 2—Winning Packages: Sample Statistics and Correlation Matrix for Geographic 
Complementarity Proxies

Characteristic  Mean  SD  Min  Max

Population/distance two markets in a package 0.0055 0.024 0 0.20

Trips between markets in a package 0.0032 0.020 0 0.182
  in the American Travel Survey

Total trips between airports in markets 0.0023 0.017 0 0.150
  in a package (thousands)

Correlations  Geo distribution ATS trips 

Population/distance two markets in a package 1

Trips between markets in a package 0.97 1
  in the American Travel Survey

Total trips between airports in markets 0.95 0.99
  in a package (thousands)

Notes: The sample is the 85 winning packages in the continental United States. The formulas for these measures 
are equations (3) and (4).
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set of estimates, raised to a power δ = 4 to make this measure overweight nearby 
territories. The choice of δ = 4 is arbitrary and was chosen to make the clusters 
of licenses seen in Figure 1 have non-trivial levels of complementarities. We also 
estimate the model with the choice of δ = 2. The measure geocomplem​.​J​ proxies 
for short-distance travel and cost and marketing synergies across nearby territories. 
Also, the measure is similar to the well-known gravity equation in international 
trade. The measure also has the desirable feature that any firm’s complementarities 
cannot decrease by adding licenses to a package.

Two Travel Measures.—Geographic measures of distance may not capture the 
returns to scope that concern carriers. Mobile phone customers may travel by 
means other than ground transportation. For example, many business users travel 
by air between Los Angeles and New York. In fact, the C block bidder NextWave 
won both the Los Angeles and New York licenses. We have two complementarity 
proxies based upon travel between two licenses. The first measure, from the 1995 
American Travel Survey (ATS), is proportionate to the number of trips longer 
than 100 km between major cities. All forms of transportation are covered. The 
downside of this measure is that for privacy reasons the ATS does not provide 
enough information about rural origins and destinations to tie rural areas to par-
ticular mobile phone licenses. Our second measure, from the Airline Origin and 
Destination Survey for the calendar year 1994, is the projected number of pas-
sengers flying between two mobile phone license areas.5 The drawback of the air 
travel measure is that it assumes all passengers stay in the mobile phone license 
area where their destination airport is located. We effectively code that there are 
zero potential complementarities between rural licenses for both travel measures. 
Both travel measures for a package J are population-weighted means across 
licenses, and take the form

(4)    travelcomplem​.​J​ = ​∑ 
i∈J

 ​ 
 

  ​ p​o​p​i​ ​ 
​∑ j∈J,  j≠i​    ​ t​rips (origin is i, destination is j)

    ___    
​∑ j∈L, j≠i​ 

 
  ​ t​rips (origin is i, destination is j)

 ​.

Our ATS measure uses the count of raw trips in the survey, and the air travel count 
is inflated to approximate the total number of trips during 1994.6 As with geo-
graphic distance, if J = L, travelcomplem​.​J​ = ​∑ i∈L​  

  ​ p​o​p​i​ = 1. Here again, adding a 
license to a package cannot take away complementarities between other licenses, so 
travelcomplem​.​J​ weakly increases as licenses are added to J.

5 Intermediate stops are not counted for either dataset. For both datasets, geographic information software (GIS) 
was used to match origins and destinations with mobile phone licenses. For airports, the origin and destination 
license areas are easy to calculate. For the MSAs (Metropolitan Statistical Areas) used in the ATS, the equivalent C 
block license area was found using the centroid of the origin or destination MSA. The C block license boundaries 
for urban areas roughly follow MSAs.

6 Our airline passenger measure does not distinguish between origins and destinations, so we simply divide the 
formula for the complementarity proxy by 2. If all airline trips are round trips during the same calendar year, this 
measure should be exactly correct.
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III.  Pairwise Stability

A. Pairwise Stability and Other Properties of Auction Outcomes

A spectrum auction is a data generating process that produces a vector of prices 
for each license  ​p​L​ = ( ​p​1​, … ,  ​p​L​  ) and an allocation of licenses A = {​J​1​, … , ​J​N​}. In 
this subsection, we define pairwise stability in matches only as well as several alter-
natives for comparison. This subsection does not present an equilibrium definition, 
instead listing properties that outcomes to auctions may or may not satisfy.

Definition 1: An allocation of bidders to licenses A = {​J​1​, … , ​J​N​} satisfying 
​∪​a∈N​ ​J​a​ ⊆ L and ​J​a​ ∩ ​J​b​ = Ø for all bidders a ∈ N and b ∈ N is a pairwise stable 
outcome in matches only if, for each pair of winning bidders a ∈ N and b ∈ N, cor-
responding winning packages ​J​a​ and ​J​b​ , as well as licenses ​i​a​ ∈ ​J​a​ and ​i​b​ ∈ ​J​b​  ,

(5)	​ π​a​​( ​J​a​ )​ + ​π​b​​( ​J​b​ )​ ≥ ​π​a​ ((​J​a​\{​i​a​}) ∪ {​i​b​}) + ​π​b​((​J​b​\{​i​b​}) ∪ {​i​a​}).

Keep in mind that private values ​ϵ​a, j​ are included in the definition of ​π​a​(​J​a​). Pairwise 
stability in matches only considers swapping licenses: the total valuations of two 
bidders must not be increased by an exchange of one license each.7 One way to 
motivate pairwise stability in matches only is to say that bidders would not want to 
exchange licenses along with side payments, at the end of the auction. This is a true 
mathematical interpretation of pairwise stability in matches only, and we will use 
the lack of swapping licenses after the auction to suggest that the outcome may have 
been pairwise stable in matches. However, when examining the output of theoretical 
models of simultaneous ascending auctions, we will not rely on bidders exchanging 
licenses with side payments. Rather, certain noncooperative equilibria to dynamic 
games will end up being pairwise stable in matches only.

Pairwise stability in matches only will lead to a matching approach to estimation. 
The results from Section 2 suggest there is important information about valuations 
that is contained in which bidders win which licenses. For example, the clustering of 
licenses in Figure 1 suggests that complementarities in licenses may be important. 
Table 1 and Figure 2 show that bidders with higher initial eligibilities win more 
licenses. This is consistent with bidders with higher eligibilities having higher valu-
ations for licenses.

Definition 2: The outcome ( ​p​ L​, A) = ( ​p​ L​, {​J​1​, … , ​J​N​}) satisfying ​∪​a∈N​ ​J​a​ ⊆ L 
and ​J​a​ ∩ ​J​b​ = 0/ for all bidders a and b is a pairwise stable outcome in both prices 

7 One could strengthen Definition 1 to consider exchanges of bundles of two or more licenses between each 
of two bidders. This notion could be called “two bidders, two bundles stability.” This is a stronger condition, as it 
implies Definition 1. The rest of the section focuses on motivating Definition 1 and not “two bidders, two bundles 
stability.” Given the lack of motivation and the desire to use weaker rather than stronger assumptions in estimation, 
we focus on Definition 1. In a previous draft with a slightly different specification for the valuation function, we did 
estimate a model using inequalities derived from exchanges of bundles of two licenses for each bidder, and found 
that the point estimates were quite similar to the estimates based on Definition 1.
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and matches if, for each bidder a = 1, … , N, corresponding winning package 
​J​a​ ⊂ L, and licenses i ∈ ​J​a​ and j ∉ ​J​a​  , j ∈ L,

(6)	​ π​a​​( ​J​a​ )​ − ​p​i​ ≥ ​π​a​((​J​a​\{i}) ∪ {   j }) − ​p​j​  .

In the above definition, at the closing prices ​p​L​, bidder a must not want to swap one 
of its winning licenses i for some other bidder’s license j. Note that pairwise stability 
in both prices and matches implies pairwise stability in matches only. Adding the 
inequality

	​ π​b​​( ​J​b​ )​ − ​p​j​ ≥ ​π​b​((​J​b​\{   j}) ∪ {i}) − ​p​i​

to (6) cancels the license prices and gives (5). We present estimates from estimators 
based on both conditions, but we focus on the weaker of the two conditions.

Because our paper seeks to structurally measure efficiency, it is important to dis-
tinguish pairwise stability in matches only from efficiency.

Definition 3: An allocation of bidders to licenses A = {​J​1​, … , ​J​N​} is efficient 
whenever

	​ ∑ 
a∈N

​ 
 

  ​ ​π​a​​​( ​J​a​ )​ ≥ ​∑ 
a∈N

​ 
 

  ​ ​π​a​​(​J​ a​ ′ ​)

for all other partitions {​J​ 1​ ′ ​, … , ​J​ N​ ′ ​} of L, where a partition satisfies ​∪​ a=1​ N
  ​ ​J​ a​ ′ ​ ⊆ L and ​

J​a​ ∩ ​J​b​ =  0/ ∀ a, b ∈ N.

Efficiency is a stronger condition than pairwise stability in matches only. It 
may be efficient for one of two bidders to win all the licenses. Pairwise stability in 
matches only simply says an equal exchange of one license each does not raise the 
sum of valuations for the two bidders.

Intuitively, our estimator will measure the importance of clustering patterns 
and other patterns on the map in Figure 1. One insight is that this way of looking 
at the map can yield a consistent estimator under pairwise stability in matches 
only, which is weaker than efficiency. Indeed, Fox (2010b) proves that nonpara-
metric identification of features of ​

_
 π​​( ​w​a​, ​x​J​ )​ can occur equally as well with the 

conditions from pairwise stability as with the conditions from efficiency (also 
known as full stability). We return to nonparametric identification in Section 
IVC.

The definition of efficiency uses knowledge of the private values ​ϵ​a, j​ and, if 
some licenses are not allocated to bidders, fixed effects ​ξ​ j  ​. Our estimation strategy 
will not recover estimates of the distributions of these unobservables, as we have 
discussed. When we turn to measuring efficiency at the end of the paper, we will 
use the following measure of efficiency, which focuses on the contribution to valu-
ations arising from observed license (package) and bidder characteristics.
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Definition 4: An allocation of bidders to licenses A = {​J​1​, … , ​J​N​} is determinis-
tically efficient whenever

	​ ∑ 
a∈N

​ 
 
  ​ ​​_ π​​β​​ (a, ​J​a​) ≥ ​∑ 

a∈N
​ 

 

  ​ ​​
_
 π ​​β​​(a, ​J​ a​ ′ ​)

for all other partitions {​J​ 1​ ′ ​, …, ​J​ N​ ′ ​} of L, where a partition satisfies ​∪​ a=1​ N
  ​ ​J​ a​ ′ ​ ⊆ L and ​

J​a​ ∩ ​J​b​ = 0/ ∀ a, b ∈ N. Likewise, ​∑ a∈N​    ​ ​​_ π​​β​​(a, ​J​ a​ ′ ​) for some partition {​J​ 1​ ′ ​, … , ​J​ N​ ′ ​} is a 
cardinal (non-ordinal) measure of deterministic efficiency.

B. Experimental Evidence on Pairwise Stability

The rest of Section III motivates why the spectrum auction outcome satisfies pair-
wise stability in matches only. Banks et al. (2003) conducted experimental evalua-
tions of the FCC simultaneous ascending auction. The authors assigned valuation 
functions to subject bidders and let the winning subjects keep their profits. A key 
advantage of experimental data is that the valuation functions of bidders are experi-
mentally induced and hence observed in the data (Bajari and Hortaçsu 2005). We can 
test directly whether the auction outcome satisfied pairwise stability in matches only.

Banks et al. (2003) consider 52 auctions, each with 10 licenses for sale and 
between 6 and 8 bidders. In some cases, bidder valuation functions exhibited com-
plementarities between some subset of the 10 licenses, and other times bidder valu-
ations were additive across licenses. Within each auction, we analyzed each pair 
of licenses won by different bidders. We checked whether Definition 1, pairwise 
stability in matches only, holds for each pair of licenses. We calculate the percentage 
of the inequalities that are satisfied within each auction. The mean auction had 95.1 
percent of its inequalities formed by the exchange of licenses between two winning 
bidders satisfy Definition 1. We feel that the approximation of Definition 1 to out-
comes to these experimental auctions is high. Of course, the real C block auction 
has many more bidders and licenses than these experiments, and so the experiments 
cannot easily be extrapolated to the C block setting.

More ambitiously, one might be interested in the fraction of auctions where the 
restrictions fit the data perfectly: 100 percent of theoretically valid inequalities are 
satisfied. 29 out of the 52 auctions satisfy pairwise stability in matches only. In 
more than half of the experiments, the restrictions of pairwise stability in matches 
only are completely satisfied. We repeat the same exercises for pairwise stability in 
both matches and prices, which is Definition 2. The mean percentage of satisfied 
inequalities across the 52 auctions is lower than before, at 88 percent. Also, only 
9.6 percent (5 out of 52) of the auctions satisfy Definition 2 perfectly: prices are 
such that bidders would prefer the licenses they won over alternative licenses. Thus, 
pairwise stability in matches only has more experimental evidence in its favor than 
pairwise stability in both matches and prices.

C. Lack of Swapping Licenses after the Auction

After the auction, reports in the trade media and government records indicate 
there was very little swapping of licenses. Swaps would have been legal: the FCC’s 
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unjust enrichment rules penalized transfers only to bidders that were not qualified 
for the C block, not swaps between C block bidders. Swapping licenses (perhaps 
with side payments) would have been direct evidence against the outcome being 
pairwise stable in matches only. While any negotiation is costly, the total bids in the 
C block auction were more than $10 billion, suggesting that negotiation time would 
be a small cost to incur in order to improve the profitability of winning bidders.

Cramton (2006) interprets the lack of immediate, post-auction resale as evidence 
that the C block auction’s outcome is efficient, a stronger condition than pairwise sta-
bility in matches only. We think Cramton’s (2006) interpretation is too strong. During 
the ten year period after the auction, many of the C block bidders were involved in 
mergers to create the large, national mobile phone carriers of today. Most of these 
mergers were with companies that did not directly bid in the C block auction. Fox and 
Perez-Saiz (2006) describe some of these mergers and show that they were primarily 
designed to expand the geographic coverage area of providers. The revealed prefer-
ence of C block bidders to participate in mergers to increase scale is evidence that the 
winning packages may have been too small. Mergers are a costlier form of license 
adjustment than exchanges, and it is possible an outcome could be pairwise stable in 
matches only but inefficient, due to an inefficiently small scale for most winning bid-
ders. Consolidation may increase valuations, but swapping licenses may not.

D. Results of Brusco and Lopomo (2002) and  
Engelbrecht-Wiggans and Kahn (2005)

Section IF presented suggestive evidence that bidders might have been implic-
itly colluding through the auction mechanism. We are not ready to conclude that 
there was definitely collusion. However, we believe the evidence in favor of implicit 
collusion is strong enough that any structural estimator for spectrum auction data 
should be consistent under the models of implicit collusion in simultaneous ascend-
ing auctions in the literature.

Brusco and Lopomo (2002), or BL (2002), and Engelbrecht-Wiggans and Kahn 
(2005), or EK (2005), present models of simultaneous ascending auctions that in 
many cases have equilibria where implicit collusion between bidders occurs. A com-
mon theme will be that BL’s (2002) and EK’s (2005) examples often satisfy pairwise 
stability in matches only. Note that finding symmetric, perfect Bayesian equilibrium 
to complex dynamic games can be challenging, as consistent sets of beliefs for all 
players must be found. BL (2002) and EK (2005) primarily prove theorems about 
what might be considered simple examples. To our knowledge, there are no general 
theorems about perfect Bayesian equilibria to spectrum auctions with arbitrary sets 
of players, licenses, and payoff structures. However, Kwasnica and Sherstyuk (2007) 
conduct experiments with the simultaneous ascending auction. They find that bidders’ 
behavior shares many of the features of the BL (2002) and EK (2005) equilibria.

We consider two examples from BL (2002). There are two bidders and two 
licenses. Each bidder has a (privately observed) payoff ​π​ 1​ for license 1, ​π​ 2​ for 
license 2, and ​π​ 1,2​ = ​π​ 1​ + ​π​ 2​ + k for licenses 1 and 2 for some k > 0. The vector 
(​π​ 1​, ​π​ 2​, k) is drawn independently across the two bidders from the support  
[0, 1​]​2​ × ​[   ​_ k​, ​

_
 k​ ]​.
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BL (2002) first study the case of ​_ k​ = ​
_
 k​ = 0, or no complementarities. In BL’s (2002) 

proposition 2, they find an equilibrium where the two bidders open with bids of 0 on 
the item with the higher private value. If the two bidders open with bids on different 
items, they split the items at a price of 0 and the auction ends. If the two bidders bid on 
the same item, bidding continues until the bids reach Δπ = ​π​ 1​ − ​π​ 2​ for one of the two 
bidders. At that point, the bidder whose value of Δπ has been reached switches to the 
second item at a price of 0. The auction ends. Although not emphasized by BL (2002), 
the outcome of this equilibrium satisfies pairwise stability in matches only.

Lemma 1: In the BL (2002) equilibrium in their proposition 2, the outcome always 
satisfies pairwise stability in matches only.

Proof:
There are two sets of outcomes. First, the bidders a and b may split the licenses 

after the first round. Without loss of generality, this happens when ​π​ a​ 1​ ≥ ​π​ a​ 2​ and 
​π​ b​ 1​ < ​π​ b​ 2​. Addition gives

	​ π​ a​ 1​ + ​π​ b​ 2​ > ​π​ a​ 2​ + ​π​ b​ 1​,

and Definition 1 is satisfied. Second, and again without loss of generality, bidder a 
may win license 1 after bidder b deviates to win license 2 when the price of license 1 
exceeds Δ​π​b​ = ​π​ b​ 1​ − ​π​ b​ 2​. We thus know Δ​π​b​ < Δ​π​a​. Rearranging the inequality gives

	​ π​ a​ 1​ + ​π​ b​ 2​ > ​π​ a​ 2​ + ​π​ b​ 1​,

and again Definition 1 is satisfied.
It is the use of Δπ to decide when to switch that ensures that this implicitly collu-

sive outcome satisfies pairwise stability in matches only. There are two reasons why 
this use of Δπ is not arbitrary. First, a bidder switching to the non-preferred license 
before Δπ would be leaving money on the table: the other bidder might drop out at 
Δπ − η for η > 0. The second reason is the notion of interim efficiency in Remark 
5 in Appendix A. This Appendix contains a series of remarks about the robustness 
of the equilibrium in BL’s (2002) example. Using references to explicit results in 
BL (2002) and EK (2005), Appendix A suggests that the existence of implicitly 
collusive equilibria (and to a lesser degree, outcomes that satisfy pairwise stability 
in matches only) may be relatively robust to the number of bidders, the number of 
licenses, correlation in private values for each bidder (ex post high and low types), 
commonly observed correlation in private values for each bidder (ex ante high and 
low types), ex ante asymmetries in the distribution of private values for each license, 
and the concern about unstudied equilibria to the model. Further, we believe pair-
wise stability in matches, by focusing on exchanges that keep the number of licenses 
won by each bidder the same, satisfies some of the spirit behind budget constraints.

In a second example, BL (2002) study the case with large complementarities, 
or ​_ k​ > 1. In BL’s (2002) equilibrium in their proposition 7, bidders are split into 
three groups. The first group has a low valuation for each of the two licenses if won 
separately and will never be intimidated to implicitly collude. The second group will 
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settle for winning license 1 if the other bidder will settle for license 2, here at prices of 
0. The third group will settle for license 2 if the other bidder will settle for license 1. 
This implicitly collusive outcome is inefficient because complementarities are large, ​
_ k​ > 1, and the outcome assigns the licenses to different bidders. BL (2002) discuss 
that if ​_ k​ = ​

_
 k​, so that both bidders have the same value for the complementarities, then 

the value of the complementarities will always be competed away in competitive bid-
ding, so that there will be no first group of bidders that refuse to implicitly collude. In 
our empirical specification for the valuation function (2), all complementarities will 
arise from the ​x​J​ term and the complementarities between different licenses for the 
same bidder will not be interacted with the bidder characteristic ​w​a​.

Lemma 2: In the BL (2002) equilibrium in their proposition 7, the outcome always 
satisfies pairwise stability in matches only.

Proof:
There are two sets of outcomes. First, competitive bidding may be triggered and 

the bidder with the highest value, say a, for the package of both licenses will win 
both licenses. In this case, there are no licenses to exchange and pairwise stability in 
matches only has no bite. In the other outcome, bidders a and b may split the items 
so that, without loss of generality, a wins 1 and b wins 2. In BL’s equilibrium, this 
happens only when ​π​ a​ 1​ > ​π​ a​ 2​ and ​π​ b​ 1​ ≤ ​π​ b​ 2​. So, (5) becomes, for ​i​a​ = 1 and ​i​b​ = 2,

	​ π​ a​ 1​ + ​π​ b​ 2​ > ​π​ a​ 2​ + ​π​ b​ 1​.

The equilibria BL (2002) find are natural. Having a high private-value realization 
for a license tells the bidder little about the valuations of its rivals. There is little 
to gain from bidding on a subset of licenses that are not the highest private-value 
realizations of the bidder. Because agents have private information, they must signal 
through bids to find sustainable, implicitly collusive equilibria.8

E. Demand Reduction

Demand reduction is when bidders unilaterally choose to not compete for all 
units they have positive valuations for. This can be profitable if they know rival bid-
ders have decreasing returns to scale in their valuations, which can include the case 
of constant marginal valuations for a finite number of homogeneous items that is 
lower than the number of items for sale (Ausubel and Cramton 2002).

8 The two BL (2002) examples also satisfy pairwise stability in both matches and prices. In the example in 
Lemma 1, if the bidders split the items at prices of 0, each bidder gets the item that gives the bidder the highest 
value. If instead they bid up the price on a single item, the bidder who uses Δπ to deviate to the second item also has 
a higher post-auction profit for the second item at the closing prices. Likewise, the interesting outcome in Lemma 2 
has the bidders splitting the items for sale at prices of 0. Other examples may have outcomes that violate pairwise 
stability in matches and prices while satisfying pairwise stability in matches. In a world where licenses have asym-
metric marginal distributions so that both bidders often prefer license 1 to 2, the bidders may still implicitly collude 
by splitting the items for sale at a price of 0 (see Remark 4 in Appendix A).   This outcome is not pairwise stable in 
prices and matches because both bidders prefer license 1 at a price of 0. If the opportunity cost Δπ is used to govern 
which bidder coordinates on bidding on license 1 (say bid on license 1 when Δπ > c for some constant c > 0 ), the 
outcome of splitting the licenses will be pairwise stable in matches only.
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Pairwise stability is an implication of the tatonnement conditions for the spec-
trum auction model of Milgrom (2000). In Appendix B, we use the tatonnement 
conditions of Milgrom (2000) to demonstrate that both Definitions 1 and 2 are sat-
isfied in a model of demand reduction in simultaneous ascending auctions, with-
out complementarities. The analysis of Milgrom (2000) requires straightforward 
bidding; strategic bidding during the auction itself is not allowed. Both BL (2002) 
and EK (2005) prove that competitive bidding is a Bayesian Nash equilibrium to 
the simultaneous ascending auction.

F. Existence of a Pairwise Stable Allocation under Complementarities

While the true data generating process is likely a dynamic Nash game, we rely on 
the conditions of pairwise stability in matches only for estimation. Milgrom (2000) 
and Hatfield and Milgrom (2005) give a key condition under which a competitive 
equilibrium, and so, a pairwise stable in matches only allocation, Definition 1, is 
guaranteed to exist in a many-to-one matching environment like a spectrum auc-
tion, where one bidder matches to many licenses but each license is matched to 
only one bidder. The key condition is that the valuation functions of bidders exhibit 
substitutes, not complementarities, across multiple licenses in the same package. 
Therefore, there is no general existence theorem for a pairwise stable allocation 
in a many-to-one matching environment with complementarities across multiple 
licenses in the same package.

Even if a model lacks a general existence theorem, it is certainly possible that 
the actual data are generated from a valid pairwise stable allocation. This is the 
maintained assumption for this paper. Not surprisingly there exists a continuum of 
private-value realizations where the C block satisfies pairwise stability in matches 
only, when β = ​   

 
 β​, the estimated parameters. Looking ahead to the structural esti-

mates, column 2 of Table 3 will indicate that 95 percent of the potential inequali-
ties from the estimation analog of Definition 1, pairwise stability in matches only, 
are satisfied at the point estimates. The estimation analog does not use license-spe-
cific private values ​ϵ​a, j​ to fit inequalities. So the 95 percent of satisfied inequalities 
comes without relying on private values at all. By making private values ​ϵ​a, j​ for the 
observed matches between bidders a and licenses j high, and keeping ​ϵ​a, j​ = 0 for 
matches that are not part of the final allocation, the fraction of satisfied inequalities 
can increase to 100 percent.

IV.  The Estimator

A. Estimator

Fox (2010a) introduces a semiparametric maximum score or maximum rank 
correlation estimator for many-to-many matching games with transferable utility. 
Maximum score was first introduced by Manski (1975) and maximum rank correla-
tion was introduced by Han (1987). In matching, the objective function is the same 
for the two estimators and the difference is whether the sample grows large in the 
number of markets (maximum score) or in the number of agents observed in a single 
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market (maximum rank correlation). Our application fits into the one large market 
asymptotic argument. The estimator is semiparametric as no parametric distribu-
tions for the unobservables ​ϵ​a, j​ and the fixed effects ​ξ​j​ are imposed. The estimator is 
based on forming the empirical analog of the inequalities in Definition 1, which uses 
data on matches but not prices.

We will estimate the parameters β in (1), the valuation function. To make 
the econometric objective functions more readable, we will sometimes write 
​​
_
 π​​β​​( a, J )​ ≡ ​​_ π​​β​​( ​w​a​, ​x​J​ )​ for bidder a and package J. Let H be the number of winning 

bidders. First consider a simple auction with two bidders a and b and two licenses 1 
and 2. In the data, a wins 1 and b wins 2. The estimator ​   

 
 β​ is any vector that satisfies 

the inequality

	​​ _ π​​β​(a, {1}) + ​​_ π​​β​(b, {2}) ≥ ​​_ π​​β​(a, {2}) + ​​_ π​​β​(b, {1}).

The inequality is satisfied whenever the sum of the deterministic parts of bidder 
valuations is not increased by an exchange of licenses. With only two bidders and 
two licenses, typically many such parameters β will satisfy the inequality. Any one 
of those parameters is a valid point estimate. Further, the confidence interval for 
β will be large. We need to use all of the data to produce an estimate of β with a 
smaller confidence interval.

For the full sample, the estimator ​   
 

 β​ is any vector that maximizes the objective 
function

(7) ​ Q​match​(β) = ​  2 _ 
H(H − 1)

 ​ ​∑ 
a=1

​ 
H−1 

​   ​∑ 
b=a+1

​ 
H

  ​  ​∑ 
i=1

 ​ 
| ​J​a​ |

​  ​∑ 
j=1

 ​ 
| ​J​b​ |

​ 1​​​​[ pop((​J​a​\{i}) ∪ {   j })

	 ≤ ​w​a​  , pop((​J​b​\{   j}) ∪ {i}) ≤ ​w​b​]

· 1​[ ​​_ π​​β​ (a, ​J​a​) + ​​_ π​​β​(b, ​J​b​) ≥ ​​_ π​​β​(a, (​J​a​\{i  }) ∪ {  j  }) + ​​_ π ​​β​(b, (​J​b​\{   j}) ∪ {i }) ]​,

where pop(J ) gives the population of the package J: ​∑ k∈J​ 
 
  ​ p​o​p​k​. The objective 

function ​Q​match​(β ) considers all combinations of two licenses won by different bid-
ders, a and b. Only inequalities involving counterfactual packages with populations 
under the initial eligibility constraints for both bidders are included. If an inequality 
is satisfied, the count or score of correct predictions increases by 1. The estimator’s 
inequalities include only the deterministic portion of valuations, ​​

_
 π​​β​(​w​a  ​, ​x​J​). Many 

inequalities will remain unsatisfied, even at the true parameter vector, because of the 
unobserved realizations of private values ​ϵ​a, j​  , which also affect matches. Because 
not all inequalities can be satisfied, changing the score objective to squaring the 
deviations from deterministic pairwise stability makes the estimator inconsistent. ​
Q​match​(β) is a step function and as a result, in a finite sample there can be a contin-
uum (or multiple continua) of parameters that maximize ​Q​match​(β). Any maximizer 
is a consistent estimator. Reporting a 95 percent confidence region for each element 
of β provides a description of the estimates that encompasses the finite sample ambi-
guity in the point estimates.
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The complete valuation function (1) includes fixed effects ​ξ​j​. If instead we worked 
with ​​

_
 π​​β​(a, ​J​a​) + ​∑ j∈J​ 

 
  ​ ​ξ​j​​ in (7), the ​ξ​j​  s would enter into both sides of (5) and differ-

ence out. Therefore, we do not need to estimate these fixed effects.
The maximum rank correlation approach only estimates the parameters β in 

​​
_
 π​​β​​( ​w​a​, ​x​J​ )​, not the distribution of any error terms. Parameters in a function of observ-

ables have always been the object of interest in maximum score (Manski 1975; Han 
1987; Horowitz 1992; Matzkin 1993). We could instead write down a likelihood as 
the outcome to a dynamic game and attempt to estimate the distribution of unobserv-
ables. This would be difficult:

	 (i)	 There are N · L = 255 · 480 = 122,400 private values ​ϵ​a,  j​ and the likelihood 
would be an integral over them.

	 (ii)	 The simultaneous ascending auction has multiple equilibria, including both 
competitive and implicitly collusive equilibria. Estimation would have to 
impose one equilibrium is selected.

	 (iii) 	An implicitly collusive equilibria is sustained by threats of punishment not 
typically seen on the path of play. 

	 (iv) 	Each ​ξ  ​j​ would be treated as a random effect as it cannot be differenced out of 
the likelihood. 

	 (v) 	Computing a likelihood would require evaluating all possible packages.

Several papers in the collection Cramton, Shoham, and Steinberg (2006) explore 
how even computing a winning bid in an alternative combinatorial auction is an active 
area of research in computer science. Cramton (2006) argues that a major motivation 
for using the simultaneous ascending auction over a package-bidding combinatorial 
auction is the computational challenge in evaluating all packages. Evaluating all pos-
sible packages is not a tractable estimation strategy in the C block environment.

B. Consistency and Inference

The asymptotics in Fox (2010a), for our application, are in the number H ≤ N 
of winning bidders observed in one large market. We assume the econometrician 
observes some finite number of recorded agents from an aggregately deterministic 
auction. Indeed, we introduce the fiction that the real-life matching market or auction 
with H winning bidders is a subset of some very large auction. As H gets larger in 
the asymptotic approximation, the researcher collects more data on a single auction.9 
The fiction is not to be taken literally; there were only 85 winning bidders in the C 
block.

9 Parameter values may affect the rate at which H increases. If complementarities are large, winning packages 
will likely be large and H might grow slowly compared to the number of licenses. The asymptotics are in H and the 
speed at which H itself increases is not directly playing a role in our arguments.
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We repeat the notion of pairwise stability in matches only from Fox (2010a) so 
readers understand the assumptions we make. Let each winning bidder have charac-
teristics w. Likewise, each license has characteristics y. The function ζ(Y ) take a set 
Y = { ​y​1​, … , ​y​J​} of J < ∞ license characteristics and forms a package characteristic 
x = ζ(Y ). The function ζ is known to the researcher. The exogenous features of the 
matching market include ​g​w​(w), the density of bidder characteristics w, as well as ​g​y​
(y), the density of license characteristics y. The terms w, x, and y can all be vectors. 
The equilibrium outcome in this auction includes a density ​g​ x,w​ β,S

 ​(〈w, x〉), which gives 
the frequency of the ordered pair 〈w, x〉, representing a winning package with char-
acteristics x for a bidder with characteristics w. The density ​g​ x,w​ β,S

 ​(〈w, x〉) is an endog-
enous outcome, and so it is a function of the vector of the unknown parameters β and 
the unknown densities S = (​g​ϵ​(ϵ), ​g​ξ​(ξ | y)) of both the license- and bidder-specific 
private values and the license fixed effects.

Assumption 4: Let 〈​w​1​, ​x​1​〉 and 〈​w​2​, ​x​2​〉 be two hypothetical winning packages 
and let ​x​1​ = ζ​( ​Y​1​ )​ for ​Y​1​ = { ​y​1,1​, … , ​y​1,​   J​1​​} and ​x​2​ = ζ​( ​Y​2​ )​ for ​Y​2​ = {​y​2,1​, … , ​y​2,   ​J​2​​}. Let 
​y​1,​i​1​​ ∈ ​Y​1​ and ​y​2,​i​2​​ ∈ ​Y​2​. Let ​x​3​ = ζ((​Y​1​\{ ​y​1,​i​1​​}) ∪ { ​y​2,​i​2​​}) and ​x​4​ = ζ((​Y​2​\{ ​y​2,​i​2​​}) ∪ { ​y​1,​i​1​​}). 
Assume, for any β and S,

	​​ _ π ​​β​​( ​w​1​, ​x​1​ )​ + ​​_ π ​​β​​( ​w​2​,​ x​2​ )​ > ​​_ π ​​β​​( ​w​1​,​ x​3​ )​ + ​​_ π ​​β​​( ​w​2​, ​x​4​ )​

if and only if

	​ g​ x,w​ β,S
 ​(〈​w​1​, ​x​1​〉) · ​g​ x,w​ β,S

 ​(〈​w​2​, ​x​2​〉) > ​g​ x,w​ β,S
 ​(〈​w​1​, ​x​3​〉) · ​g​ x,w​ β,S

 ​(〈​w​2​, ​x​4​〉).

This assumption is also called a rank order property. The econometric version of 
pairwise stability in matches is a condition on the equilibrium sorting pattern. It says 
that if an exchange of licenses produces a lower sum of deterministic valuations, 
then the frequency of observing winning packages with the same characteristics 
as the exchange of licenses must be lower than observing winning packages with 
characteristics that give higher valuations. Note that the same number of licenses 
is won by a bidder on both sides of the inequalities in Assumption 4. We do not 
ask why a single bidder did not win more licenses, because bidders may split the 
licenses among them because of intimidatory collusion, not efficiency. Assumption 
4 rules out estimation challenges involving multiple equilibria. By using data from 
only one auction, we condition on the equilibrium being played in that market. Also, 
the assumption implicitly assumes an equilibrium allocation ​g​ x,w​ β,S

 ​(〈w, x〉) exists. Fox 
(2010a) discusses Assumption 4 in more detail.

Given additional assumptions on the support of β, w, and x, Fox (2010a) shows 
that the estimator is consistent, following the original arguments of Han (1987). 
One part of the usual way of showing that an extremum estimator is consistent is 
proving that its population objective function is uniquely globally maximized at 
the true parameter value (Newey and McFadden 1994). For a simpler example that 
gives intuition for this type of estimator, consider the binary choice maximum score 
estimator (Manski 1975). In the binary choice model, a consumer chooses to buy a 
product with characteristics c whenever c′γ + μ > 0, where c are regressors, γ are 
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parameters to estimate, and μ is an error term. Manski gives conditions on the error 
term such that a rank order property holds: c′γ > 0 if and only if Pr​( buy | c )​ > ​ 1 _ 2 ​. The 
finite sample objective function with n observations on consumers indexed by i is

​Q​n​(γ) = ​ 1 _ n ​ ​∑ 
i=1

 ​ 
n

  ​ (​1[i buys in data] · 1[c′γ > 0] + 1[i does not buy in data] · 1[c′γ < 0]).

Using the law of iterated expectations and the law of large numbers, the population 
objective function is then

plim ​Q​n​(γ) = ​E​c​(Pr (buy | c) · 1[c′γ > 0] + (1 − Pr (buy | c)) · 1[c′γ < 0]).

At the true value of γ, the rank order property ensures that Pr (buy | c) > ​ 1 _ 2 ​ when-
ever c′γ > 0, so that the true γ globally maximizes the population objective func-
tion if some element of c has continuous support so that ties have measure zero. 
Continuous support also ensures that the maximum is unique; we omit the argument.

Sherman (1993) shows that the maximum rank correlation estimator is 
​√ 
_

 H ​-consistent and asymptotically normal. The asymptotic variance matrix derived 
in Sherman (1993) is complex to use in that it requires additional nonparametric 
estimates of components that appear in the variance matrix. To avoid this complex-
ity we use a resampling procedure known as subsampling, which is consistent under 
fairly weak conditions. As Politis and Romano (1994) state, essentially the only 
assumption needed for the validity of subsampling is that the estimator has a limit-
ing distribution.

C. Nonparametric Identification of Features of the Valuation Function

Fox (2010b) proves a sequence of theorems about the nonparametric identifica-
tion of features of ​

_
 π ​​( ​w​a​, ​x​J​ )​. Functional form assumptions are not required for ​

_
 π ​; it 

is not known up to a finite vector of parameters β.
In this paper, we wish to identify the allocative efficiency of the observed C block 

allocation and counterfactual allocations, following Definition 4. Fox (2010b) does 
not prove that the total sum ​∑ a∈N​  

  ​ ​
_
 π ​​​( a, ​J​a​ )​ of an allocation of licenses to bidders 

is nonparametrically identified up to scale. Some parametric assumptions will be 
needed for our measurements.

The nonparametric identification theorems do provide some insights. Expression 
(2) says that the parametric valuation function can be decomposed into one term 
involving the sorting of bidders with higher valuations to packages with more popu-
lation and several terms involving the geographic complementarities among a set of 
licenses in the same package. Theorem 5.2 in Fox (2010b) states that we can iden-
tify the sign of the first term nonparametrically, i.e., whether bidder heterogeneity is 
a complement to package population. We see whether assortative matching between 
heterogeneous bidders and package populations is more likely than anti-assortative 
matching in the observed allocation. Likewise, theorem 5.6 in Fox states that we 
can identify nonparametrically whether each proxy for complementarities really 
has a positive sign in valuations. More importantly, theorems 5.3 and 5.7 in Fox 
state that we can nonparametrically identify the relative magnitudes of each of the 
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complementarity measures. We can identify, without any functional form assump-
tions, the ratio of the complementarities between bidder heterogeneity and popula-
tion to the geographic complementarities between licenses. In effect, we identify 
the ratio of the two-sided complementarities between bidders and licenses to the 
one-sided complementarities between licenses in the same package.

The parametric functional form in (2) specifies the valuation function to be known 
up to parameters that, by the above arguments, are known to be nonparametrically 
identified. Thus, the extrapolation out of sample to examine the efficiency of coun-
terfactual allocations relies on a parametric functional form whose parameters rep-
resent objects that are nonparametrically identified within the sample.

V.  Main Estimates of Valuation Functions

Table 3 lists estimates of β in the valuation function, (2), from the maximum 
rank correlation estimator. The numbers in parentheses are 95 percent confidence 
intervals. Computational details are discussed in the footnote to the table. Columns 
1 and 2 report baseline estimates. The number of inequalities is 13,428. As in 
(2), because matches are qualitative outcomes, we normalize the coefficient on 
eli​g​a​(​∑ j∈J​ 

 
  ​ p​o​p​j​) to be ±1. We estimate the other parameters β separately for the 

+1 and −1 normalizations, and pick the vector with the highest number of satisfied 
inequalities. The results show that +1 is the correct point estimate. This fits the fact 
in Figure 2 that bidders with more initial eligibility win packages with more total 
population.

Column 1 includes only one proxy for geographic complementarities: geographic 
distance, (3). The coefficient of ​β​geo.​ = 0.32 means, at the furthest extrapolation, that 
if one bidder with the maximum eligibility of 1 were to win the entire United States 
(population of 1), then the also maximized complementarities (value of 1 · ​β​geo.​) 
would give a total package value of 1 · 1 + 0.32 · 1 = 1.32. The value from 
complementarities corresponds to 0.32/1.32 = 24 percent of the total package 
value. Across the 85 winning packages, the standard deviation of eli​g​a​​( ​∑ j∈J​ 

 
  ​ p​o​p​j​ )​ 

is 0.029 and the standard deviation of geocomplem​.​J​ is 0.024. Because the stan-
dard deviations are roughly the same, the coefficient estimate ​β​geo.​ = 0.32 implies 
that variation in the geographic location of licenses, geocomplem​.​J​  , is roughly 
0.32/1 = 32 percent as important in explaining the valuation of winning bidders 
as variation in the match between bidders with more eligibility and packages with 
more population, eli​g​a​​( ​∑ j∈J​ 

 
  ​ p​o​p​j​ )​.10

Column 2 adds the two travel based complementarity measures to the specifica-
tion. Now, not only do we measure the relative importance of  eli​g​a​​( ​∑ j∈J​ 

 
  ​ p​o​p​j​ )​ 

and complementarities in sorting, we see which measure of complementarities is 
most important. Total trips using all forms of travel has a statistically insignificant 
coefficient of 0.03, while the coefficient on geocomplem​.​J​, 0.32, is similar to the 

10 The estimates ignore the fact that the bidder OmniPoint was, outside of the auction, given (by the FCC) a 
special pioneer license for the highly populated market of New York City. We do not include OmniPoint’s license, 
so we do not need to make assumptions about its disposition in the counterfactual allocations in Table 5. Failing to 
account for OmniPoint’s total package might induce small biases in the parameter estimates.
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coefficient in column 1. One interpretation is that the geographic pattern of cluster-
ing reflects more than just customers wishing to make calls while traveling. Other 
forms of complementarities include marketing and cost-of-service synergies. The 
second travel measure, air travel, has a negative point estimate with a wide confi-
dence interval that includes 0. The wide confidence regions are not surprising given 
the high correlation in Table 2 between the two travel measures among winning 
packages.11 The upper bound of its 95 percent confidence interval of 0.34 does 
allow for important role for air travel synergies.12 The standard deviation of air 
travel complementarities is 0.017, which is only a little smaller than, say, the stan-
dard deviation of geographic distance complementarities of 0.024. Given the similar 
standard deviations, the point estimates show air travel substantially reduces valua-
tions compared to geographic distance or the composite measure of travel.

Table 3 also lists the percentage of satisfied inequalities at the point estimates, 
which is a measure of statistical fit. Nintey-five percent of the inequalities are satis-
fied. Vertical differences in bidder valuations for licenses and complementarities 
across licenses in the same package can explain most of the sorting patterns at the 
pair of licenses level.

11 In a previous draft, we reported results using inequalities whether or not they violated the initial eligibil-
ity constraints. Using more inequalities substantially reduces the width of the confidence regions on some of the 
estimates.

12 The point estimate on air travel is a lower bound on the complementarities from air travel, as air travel also 
appears in the ATS survey and is being double counted. Roughly 75 percent of trips in the ATS are by car; the frac-
tion by air increases with distance.

Table 3—Maximum Rank Correlation Estimates of Valuation Parameters

Column (1) (2) (3) (4)

Distance parameter δ 4 2

Population × +1 +1 +1 +1
  bidder eligibility Superconsistent

Population/distance 0.32 0.32 1.06 0.86
  two markets in a package (0.31, 0.50) (0.30, 0.47) (0.87, 1.56) (0.58, 1.06)
Trips between markets in a package 0.03 −0.62
  in the American Travel Survey (−0.08, 0.40) (−0.96, −0.27)
Total trips between airports in markets −0.16 −0.26
  in a package (thousands) (−0.37, 0.34) (−0.51, 0.51)
Number possible inequalities 13,428

Percent inequalities correct 0.944 0.945 0.956 0.960

Notes: The objective function was numerically maximized using differential evolution (Storn and Price 1997). 
More than ten runs were performed for all specifications. The reported point estimates are the best found max-
ima. The parentheses are 95 percent confidence intervals computed using subsampling. Subsampling uses 200 
replications and 25 packages per replication (sampled without replacement). For each 25 packages, we use only 
the inequalities where all licenses are from the sampled packages. Subsampled confidence regions are not neces-
sarily symmetric around the point estimate. In unreported results, we take subsets of the data by using only the 
inequalities corresponding to 120 out of the 480 licenses in the United States. For each license, we evaluate the 
valuation functions using the full winning package, whether all of the package’s licenses are among the subset 
of 120 or not. The confidence regions from drawing licenses are similar to the regions found by drawing pack-
ages. Subsampling has not been extended to allow for spatial autocorrelation, so we do not adjust for such corre-
lation. Parameters that can take on only a finite number of values (here  ±1) converge at an arbitrarily fast rate; 
they are superconsistent.
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Columns 3 and 4 use a different δ parameter in the geographic complementari-
ties measure based on distance and population, (3). In column 3, the coefficient on 
geographic distance complementarities is 1.06, higher than the point estimate of 
0.32 in column 1. This is not because of a change in units; the standard deviation 
of geographic distance complementarities for δ = 2 is similar to the standard devia-
tion for δ = 4. A similar increase of the point estimate happens when comparing the 
point estimate on geographic complementarities in column 4 to the point estimate 
in column 2. The coefficients on the two travel complementarities are negative, with 
wide confidence intervals on air travel.13

VI.  Estimators Using Other Inequalities

This section explores two alternative estimators that use inequalities based on 
different theoretical conditions for estimation. One estimator is explicitly incompat-
ible with intimidatory equilibria where agents split the items for sale, and the other 
estimator uses closing prices data to explain why one license is preferred to another 
license by a bidder. We show that the alternative estimators generate bizarre esti-
mates of bidder valuations.

A. Estimates with Forced Transfers of Licenses

Columns 1 and 2 of Table 4 consider a variant of the estimator where bidder a 
adds a license j to its package J without swapping the license for another. Let η​( j )​ 
be the bidder who wins license j. A corresponding inequality for a’s decision not to 
win j involves an increase in the number of a’s licenses by 1 and a decrease in the 
number of η​( j )​’s licenses by 1. Let H be the set of 85 winning bidders. The estimator 
is any parameter value that maximizes

 ​ Q​addmatch​(β) = ​∑ 
a=1

​ 
H

  ​ ​∑ 
j=1

 ​ 
L

  ​ 1​​[a ≠ η​( j )​] · 1[ pop(​J​a​ ∪ { j  }) ≤ ​w​a​]

· 1​[ ​​_ π ​​β​(a, ​J​a​) + ​​_ π ​​β​(η( j), ​J​η​( j )​​) ≥ ​​_ π ​​β​(a, ​J​a​ ∪ {   j  }) + ​​_ π ​​β​(η( j  ), ​J​η​( j )​​\{   j}) ]​,

where ​J​η( j )​ is the complete package won by the bidder that won license j. The estima-
tor imposes the condition that a did not increase its package by one license because 
the sum of valuations of a and η( j ) would go down from doing so: it would be less 
efficient. This condition may be untenable because a may instead have not added 
the license j to a’s package because of a fear of suffering retaliation from bidder 
η( j ). Therefore, maximizing ​Q​addmatch​(β) produces an inconsistent estimator under 
the intimidatory equilibria in Brusco and Lopomo (2002) and Engelbrecht-Wiggans 
and Kahn (2005).

Columns 1 and 2 report a priori unreasonable estimates. In column 1, the coef-
ficient on complementarities is implausibly large (although with a wide confidence 
interval). The point estimate of 6.7 shows the contribution to valuations from 

13 If estimation does not drop inequalities where counterfactual package populations violate initial eligibility 
constraints, the point estimates on the complementarity measures are positive with smaller confidence intervals.
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complementarities is roughly 7 times the valuation from winning an equivalent 
amount of population (times eligibility). The coefficient in column 2 is an even 
larger 9.8.14

B. Estimates with Prices

Columns 3 and 4 of Table 4 report estimates using both matches and prices data. 
The maximum score objective function is based on Definition 2, pairwise stability in 
both matches and prices. When using price in addition to matches data, the estima-
tor ​   

 
 β​ is any vector that maximizes the objective function

(8) ​ Q ​price​(β) = ​ 1 _ 
​L​2​

 ​ ​∑ 
i=1

 ​ 
L

  ​ ​∑ 
j=1

 ​ 
L

  ​ 1​​[η​( i )​ ≠ η​( j )​] · 1[ pop((​J​η​( i )​​\{i }) ∪ {   j }) ≤ ​w​η​( i )​​]

1​[ ​​_ π ​​β​​( η​( i )​, ​J​η​( i )​​ )​ − ​​_ π ​​β​(η​( i )​, (​J​η​( i )​​\{i }) ∪ {  j  }) ≥ ​p​i​ − ​p​  j​ ]​,

where ​p​i​ is the final, closing price of license i and η​( i )​ is defined above. Here, we 
impose the restriction that bidder η​( i )​ prefers to win its package ​J​η​( i )​​ instead of win-
ning (​J​η​( i )​​\{i }) ∪ {   j  }, or license j instead of i, at the closing prices to the auction. 
In other words, we impose the condition that the closing prices explain why bidder 
η​( i )​ won license i instead of j. Rearranging the inequality gives the inequality in 
Definition 2, except that like the other estimators, the private-value terms ​ϵ​a, j​ are not 
included, as is standard for maximum rank correlation estimators. Fixed effects ​ξ​j​ 

14 A previous draft included point estimates from inequalities that violate the initial eligibility constraint. The 
confidence intervals are smaller, typically exclude zero, and the point estimates are even larger in magnitude.

Table 4—Estimators Using Other Inequalities

Type of inequalities Transfer of 1 license Swaps of 1 license w/prices

(1) (2) (3) (4)

Population × +1 +1 0.36 0.36
  bidder eligibility Superconsistent (−0.13, 0.41) (−0.15, 0.42)
Population/distance 6.7 9.8 0.12 0.12
  two markets in a package (−3.0, 9.2) (−12, 14) (−0.23, 0.15) (−4.82, 0.15)
Trips between markets in a package −0.37 0.03
  in the American Travel Survey (−0.49, 1.2) (−0.81, 0.19)
Total trips between airports in markets −0.1 −0.09
  in a package (thousands) (−0.39, 0.06) (-0.22, 0.04)
Price −1 −1
  (in trillions) Superconsistent

Number possible inequalities 16,084 73,409

Percent inequalities correct 0.950 0.953 0.913 0.914

Notes: All estimates use δ = 4 . See Table 3 for computational details.
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cannot be allowed in this type of estimator; for consistency using prices, we must 
assume the fixed effects are always zero.15

Akkus and Hortaçsu (2007) were the first to use the estimator with prices and 
perform a Monte Carlo study. In all of our Monte Carlo experiments (see Appendix 
C for some examples) with i.i.d. private-value terms ​ϵ​a, j​  , the estimator performs 
extremely well.

In columns 3–4 of Table 4, we have included price, measured in trillions of dol-
lars. The coefficient on price is normalized to be ±1 and estimated to be −1. Taken 
literally, the coefficient on 0.36 on eli​g​a​ (​∑ j∈J​ 

 
  ​ p​o​p​j​) in column 3 says that the value 

of a bidder with eligibility equal to the entire US’s population winning the entire US 
is $360 billion (although it is not statistically distinct from zero). Likewise, the value 
of complementarities from a nationwide license is $120 billion. These estimates are 
absurdly high, given that the bids for the C block totaled $10.1 billion. Indeed, the 
annual revenue for the wireless phone industry in 2006, with nine or more active 
licenses per territory (not just the C block), was $113 billion. It is unlikely that bid-
ders in 1996 felt the C block had 7–8 times the stock of profit potential as the yearly 
flow of revenue from all blocks combined 10 years later.

How is the model fitting the outcome data? Only the ratio of two parameters that 
enter structural payoffs linearly, say ​β​geo​/​β​price​  , is identified from an inequality. A high 
dollar value for non-price package and bidder characteristics is equivalent to saying the 
estimated coefficient on license price ​β​price​ would be economically small in magnitude 
if some other characteristic’s coefficient was normalized to  ±1. A small coefficient 
on price is consistent with the finding in Section ID that population and population 
density, characteristics mostly subsumed into ​ξ​j​  , explain most price variation.

As we discussed in Section IE, Ausubel et al. (1997) included measures of the 
runner-up bidder’s potential complementarities in a license-level price regression, 
and found a nonzero but economically small coefficient. Together, the estimates 
from (8) and the price regressions suggest that prices may not clear the market in the 
sense of sorting price taking bidders to different packages in a competitive market. 
Pairwise stability in prices and matches, Definition 2, may not be satisfied.

VII.  Counterfactual Efficiencies and Policy Implications

A. Actual and Counterfactual Deterministic Efficiencies

We compare the efficiency of the observed allocation of licenses to that of sev-
eral counterfactual license allocations. The parameter estimates from the previous 
section suggest that some of the various measures of complementarities are impor-
tant determinants of bidder valuations. However, the auction allocated licenses to 

15 In Definition 2 and the objective function (8), ​ξ​j​ does not difference out of the inequality, like it does in 
Definition 1. Therefore, we have also estimated specifications including population and population density (we used 
all inequalities, not just those under initial eligibility). The point estimates on the covariates that affect the efficiency 
of alternative allocations of licenses to bidders are then $886 billion for winning the entire US’s population for eli​
g​a​(​∑ j∈J​ 

 
  ​ p​o​p​j​), and $743 billion for the geographic complementarities geocomplem​.​J​ for winning the entire United 

States. These estimates dramatically reinforce the finding that, under an alternative scale normalization, the coef-
ficient ​β​price​ is estimated to be economically small.
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85 different bidders, which suggests that an improvement in deterministic efficiency 
is possible by grouping licenses into larger winning packages. Furthermore, our ear-
lier results suggest that demand reduction and intimidatory collusion may be present 
in the auction, which causes or exacerbates this inefficiency.

We did not include any bidder or license characteristics in the deterministic 
valuation function (2) that (ex ante) would seemingly make smaller licenses opti-
mal. Nor can we think of obvious measures in the US mobile phone industry, 
as this industry does seem to benefit from geographic scope, if only because of 
the demand side preference for larger calling areas that we estimate in Bajari, 
Fox, and Ryan (2008). It is more or less given that geographically larger licenses 
will improve deterministic allocative efficiency. The purpose of this section is to 
quantitatively measure exactly how much more geographically larger licenses will 
improve allocative efficiency. If the efficiency gain is small, there might not be 
much scope for policy in improving the allocation. We use the point estimates from 
column 2 of Table 3 and the definition of deterministic efficiency in Definition 4. 
The results are in Table 5.

For a given allocation of licenses, Table 5 reports the value of ​∑ a∈N​  
  ​ ​​

_
 π ​​β​​​( a, ​J​a​ )​. It is 

easiest to look at the last row of the table first. The last row considers the largest winner 
(and bidder with the highest initial eligibility), NextWave, winning all 480 licenses 
in the continental United States. NextWave was initially eligible for 176 million peo-
ple, or 71 percent of the 1990 population. Therefore, the contribution to total value 
from NextWave’s differential use for licenses is 0.71. NextWave winning all licenses 
would maximize the three geographic-complementarity proxies, at values of 1 each. 
So the total differential value (excluding the ​ξ​j​ s) of a nationwide license is 1 · 0.71 + ​
β​1​ · 1 + ​β​2​ · 1 + ​β​3​ · 1, where the three β  s are the complementarity parameters esti-
mated in column 2 of Table 3. The total value of a nationwide license is then 0.90.

Table 5—Counterfactual Deterministic Efficiency from Five Allocations: 
Point Estimates Imposing Eligibility Constraints

Allocation eli​g​a​(​∑ j∈J​ 
 
  ​ p​o​p​j​) 

Geographic 
distance

Air 
travel

ATS 
trips

Total

C block: 85 winning 1 · 0.39 = 0.32 · 0.47 = −0.16 · 0.20 =  0.03 · 0.27 =
  packages 0.39 0.15 −0.03 0.01 0.52

All 480 licenses won by 1 · 0.17 =  0.32 · 0 =  −0.16 · 0 = 0.03 · 0 = 
  different bidders 0.17 0 0 0 0.17

Each 47 MTAs 1 · 0.20 = 0.32 · 0.72 = −0.16 · 0.04 = 0.03 · 0.17 =
  separate package 0.20 0.23 −0.01 0 0.43

Four large, regional licenses 1 · 0.50 = 0.32 · 0.96 = −0.16 · 0.37 = 0.03 · 0.58 = 
  (top four of the 85 actual
  winners win)

0.50 0.31 −0.06 0.02 0.77

Nationwide license for 1 · 0.71 =  0.32 · 1 = −0.16 · 1 = 0.03 · 1 = 
  entire United States
  (NextWave wins)

0.71 0.32 −0.16 0.03 0.90

Notes: Eligibility, population, and all three complementarity proxies range from 0 to 1. These counterfactuals use 
the point estimates from column 2 of Table 3. Only licenses in the continental United States are considered. For the 
47 MTAs in the continental United States, as well as the four large regions, the top winners in the actual auction are 
assortatively matched to the counterfactual packages in order of population. For example, NextWave always wins 
the package with the highest population.



134	 American Economic Journal: Microeconomics�feb ruary 2013

Now consider the other four efficiency evaluations. The first row considers the 
actual allocation of bidders to licenses in the C block auction. The total surplus 
generated by the C block is 0.52, less than the 0.90 from the nationwide license. The 
terms in three of the four columns (excepting the column using the negative point 
estimate) are smaller than in the bottom column, suggesting that the C block failed 
to maximize the potential benefits from complementarities.

The second row considers an extreme where all 480 licenses are won by sepa-
rate bidders. There can be no across-license complementarities. We impose that the 
licenses auctioned in the C block are the lowest level of disaggregation possible. 
There are 255 C block bidders (losers and winners). We assortatively match bid-
ders to licenses by initial eligibility for bidders and population for licenses, so that 
NextWave wins New York, for example. For the 480 − 255 = 225 licenses with the 
smallest populations, we say they are won by bidders with the lowest (255th) level 
of initial eligibility. The results show that the contribution from the eli​g​a​(​∑ j∈J​ 

 
  ​ p​o​p​j​) 

term is 0.17, smaller than the actual C block allocation’s value of 0.39 by about half. 
This reflects bidders with lower valuations winning licenses.

The third row considers grouping the 480 C block licenses into 47 packages 
reflecting the 47 Major Trading Areas (MTAs) in the continental United States used 
for the 1995 AB spectrum auction. No C block license belongs to more than one 
MTA. The MTAs are natural groupings centered around large metropolitan areas, 
but including lots of rural territory as well. Again, we assortatively match winning 
bidders to licenses based on initial eligibility and population, so again NextWave 
wins New York. However, in the C block auction NextWave won New York and a 
lot more, so here the contribution from assortative matching between heterogeneous 
bidders and package population is low, at 0.20. However, the design of the MTA 
boundaries ensures that most local, geographic distance complementarities are cap-
tured. The measure of geographic distance complementarities rises from 0.47 to 
0.72. On the other hand, the MTAs are only local areas, and so a great deal of travel 
between regions occurs across MTAs. The values of the travel geographic comple-
mentarity measures are small under the MTA scenario. The total value of this alloca-
tion is 0.43, lower than the actual C block allocation.

The fourth row considers splitting the United States into four large regions: the 
Northeast, Midwest, South, and West. We assign each of the 47 MTAs to one of these 
groupings. The Midwest is roughly from Pittsburgh to Wichita, Washington, DC is in 
the Northeast, and Oklahoma and Texas (other than El Paso) are in the South. We take 
the four largest winners by initial eligibility and assortatively match them to the four 
regions by population. NextWave’s package is the Midwest; it is still slightly smaller 
in population than the package NextWave won in the C block. The fourth row shows 
that the contribution from differential bidder valuations is now higher, the measure of 
geographic distance complementarities is close to 1, and the two travel measures are 
about twice as high as the C block values. Thus, a system of four large regions raises 
the value from complementarities compared to the C block and significantly raises 
the amount of the US population won by high-value bidders. The United States is 
much bigger than a typical Western European nation; auctioning four licenses is 
workable plan that captures a large fraction of the maximum possible deterministic 
efficiency, 0.77 out of 0.90. These point estimates indicate that the efficiency from 
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four large regional licenses is 0.77, which is 48 percent higher than the efficiency of 
0.52 from the C block allocation. The figure of 48 percent is a lower bound on the 
improvement in deterministic efficiency, because the same, high value bidder could 
win two or more of the large, regional licenses in an actual simultaneous ascending 
auction with four licenses.

B. Policy Implications for Bidder Anonymity

In 2006, the FCC changed policies so that the bidder identities of submitted bids 
are now anonymous. The intention of this rule change was to limit intimidation 
and signaling. A previous draft of this paper addressed one mechanism of signaling 
other bidders (jump bids) more explicitly. Here, our policy counterfactuals suggest 
that the simultaneous ascending auction produced inefficiently small winning pack-
ages. If bidder anonymity is one way of reducing the scope of intimidation, then it 
may make the final allocation of licenses to bidders more efficient.

C. Bidders with Overly Optimistic Beliefs

One limitation of our revealed preferences approach to estimate bidder valuation 
functions is that the winning bidders may have overstated the short-term value of 
the licenses. All the bidders bid less than the long-term license value (compared 
to the high valuations for 30 MHz of 1900 MHz spectrum in the modern mobile 
phone industry) but the C block winners might have been overly optimistic about 
the short-term prospects. In this case, overly optimistic beliefs would lead to a dis-
junction between the estimated valuation function consistent with bidder behavior 
and the function a social planner focused on a short horizon might use to evaluate 
the efficiency of the allocation. Optimistic beliefs may have lead the large winners 
to devote more money to initial eligibility than losers and small winners, thus rais-
ing the the estimated economic importance of eli​g​a​ · (​∑ j∈J​ 

 
  ​ p​o​p​j​) in the valuation 

function, (2). Likewise, bidders may have overstated complementarities, meaning 
that the parameters β in (2) are too high. As we impose that the coefficient on  
eli​g​a​ · ​( ​∑ j∈J​ 

 
  ​ p​o​p​j​ )​ is normalized to 1, these competing biases may have over or 

underestimated the parameters of β relative to those a social planner would prefer.

D. Competitive Scale-Reducing Economic Forces

Intimidation and demand reduction reduce the size of winning packages and make 
the resulting mobile phone industry lack true national players. At least three other 
economic forces that are compatible with competitive bidding work in the same 
direction. First, bidders may have monetary budget constraints, so that financial 
constraints from outside of the auction make the auction outcome inefficient. See 
also Remark 9 in Appendix A. Second, a bidder may run down eligibility by focus-
ing on a smaller license, and be unable to switch to a license with a larger population 
once the price of the smaller license becomes too expensive. Path dependence may 
lock a bidder into considering only substitute licenses with relatively small popu-
lations. See also Remark 10 in Appendix A. Third, the FCC’s rules prevented one 
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bidder from winning more than 98 licenses in the C and F auctions. Only the largest 
winner, NextWave, was anywhere close to bumping up against this constraint.

The previous descriptive literature and our bidding anecdotes in Section IF show 
that bid signaling did go on during the C block auction (Cramton and Schwartz 
2000). However, measuring the extent or effectiveness of signaling seems difficult 
when these other factors also reduce winning package sizes. We note all three of 
these competitive reasons for inefficiently-small winning packages are consistent 
with larger licenses raising efficiency.

E. Producer versus Consumer Surplus

By “efficiency,” we mean the efficiency of the allocation of licenses to bidders, 
from the viewpoint of bidders and not the consumers of mobile phones. As in all 
papers on auctions adopting a revealed preferences approach, we cannot use the 
outcome of the auction to identify a social planner’s welfare function separate from 
the valuations of the bidders. In Bajari, Fox, and Ryan (2008), we did measure the 
preferences of consumers; we estimated a substantial willingness to pay for larger 
coverage areas. Here, we consider a spectrum auction with only one license per 
territory and only new entrant bidders, so the auction will increase the number of 
competitors by one in each territory regardless of which bidder wins each territory. 
Therefore, an outcome of the auction that results in carriers with geographically 
large coverage areas will not directly allow such entrants to exercise more market 
power than entrants with smaller coverage areas, except through offering the higher 
quality product of more coverage. Still, there might be other reasons why a company 
with a large geographic coverage area is bad for consumers, such as the exercise of 
market power in vertical markets (say handset provision) that might deter techno-
logical innovation. Our approach is based on bidder revealed preference and will 
not detect such consumer welfare losses, although we are unaware of any empiri-
cal evidence showing negative effects of geographically large coverage areas in the 
mobile phone industry.

VIII.  Conclusions

We measure the efficiency of the outcome of an FCC spectrum auction using a 
structural model of the deterministic portion of bidder valuations. A spectrum auc-
tion is a complex dynamic game, with many bidders and many items for sale. The 
simultaneous ascending auction is theoretically susceptible to intimidatory collu-
sion. Intimidation may result in winning packages that are inefficiently small, as 
bidders split the market to coordinate on paying less to the seller.

Our approach to estimation uses an econometric version of pairwise stability in 
matches. Pairwise stability says the sum of valuations from two winning bidders must 
not be increased by swapping licenses. There are four pieces of evidence suggesting 
that pairwise stability is likely to hold in simultaneous ascending auctions: experimen-
tal evidence, the lack of post-auction swapping, theoretical analysis of implicit collu-
sion, and theoretical analysis of demand reduction. Intimidatory collusion is sustained 
by bid signaling and threats of retaliation by reverting to straightforward bidding.
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We employ a matching maximum rank correlation estimator, which maximizes 
the number of inequalities that satisfy pairwise stability. The estimator is computa-
tionally simple as it avoids evaluating all possible counterfactual packages. Also, the 
estimator controls for additive, license-specific fixed effects. We estimate valuations 
using data on only the matches between bidders and licenses, not data on the closing 
prices. Indeed, we show that two alternative estimators, including one using price 
data, produce bizarre estimates using the C block data.

Our estimates empirically validate the FCC’s focus on complementarities when 
designing the mechanism for allocating radio spectrum. Also, the spectrum auc-
tion itself produces a much higher surplus than awarding licenses through the 
FCC’s prior practices, such as lotteries. However, we find that the final allocation of 
licenses was allocatively inefficient before considering private values. Deterministic 
efficiency would increase by 48 percent by awarding four large, regional licenses to 
the four highest-value bidders. A nationwide license would capture even more of the 
total deterministic efficiency. To a rough degree, our finding that splitting the United 
States into four large chunks raises deterministic efficiency validates the European 
approach of offering nationwide licenses and hence capturing all geographic com-
plementarities, as the largest Western European countries (France, Germany, the 
United Kingdom) are, in terms of population, on the scale of about a fourth of the 
United States.

Appendix A: Remarks about Generalizations  
to the Main BL (2002) Example

This Appendix discusses extensions to the main BL (2002) example, where there 
are two bidders, two items for sale, and no complementarities. The main BL (2002) 
example is proposition 2 in their paper. We follow the expositional style of the the-
ory papers BL (2002) and EK (2005), where formal theorems are proved for simple 
examples and extensions are discussed less formally.

Remark 1: In the remarks that follow, often the analysis of BL (2002) and EK 
(2005) is worried that implicit collusion, as in the BL (2002) examples in Section 
IIID, is not sustainable. In these cases, bidders may find the expected value (over the 
private values of rivals) for competing for all the licenses to be higher than implicitly 
colluding. Competitive bidding does not provide a concern for the estimator. BL 
(2002) and EK (2005) show competitive bidding is a perfect Bayesian equilibrium 
that will result in an efficient outcome. Efficient outcomes are automatically pair-
wise stable in matches only.

Remark 2: The main BL (2002) examples requires an assumption on the mar-
ginal distribution of ​π​ 1​ and (because they are identically distributed) ​π​ 2​. However, 
little is assumed about the joint distribution. Thus, the BL (2002) examples allow a 
bidder’s private values to be correlated across licenses. There can be ex post high-
value or low-value bidders. In this case, the identities of the high-value or low-value 
bidders are not common knowledge. Also see theorem 4 in EK (2005), which also 
studies the case of joint dependence between ​π​ 1​ and ​π​ 2​, or ex post high and low 
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private-value bidders. Note that if our bidder heterogeneity measure w was private 
information and entered ​π​ 1​ and ​π​ 2​, it would just induce correlation between ​π​ 1​ and ​
π​ 2​. So a private w is nested in the above analysis. A privately observed w is con-
venient theoretically, but does not apply to the actual C block auction, where our 
measure of w was disclosed to rival bidders before the auction.

Remark 3: The main BL (2002) example studies the case of two bidders and 
two licenses. The discussion following theorem 4 in EK (2005) states that simple 
implicitly collusive equilibria are possible whenever the number of licenses exceeds 
the number of bidders. Further, proposition 4 in BL (2002) finds a collusive equi-
librium where there are more bidders than licenses. In this equilibrium, high-value 
bidders raise the price to weed out weak bidders, before attempting to signal and 
implicitly collude. All implicitly-colluding bidders must win an item for collusion to 
be successful. Because of the need to weed out the weak bidders, we would not nec-
essarily expect to see very low prices in intimidatory-collusive equilibria. Indeed, 
the prices in the C block were not particularly low.

Remark 4: The main BL (2002) example studies the case where each license 
has an identical marginal distribution. Remark 3 in BL (2002) explores the case 
where each of the private values for licenses 1 and 2 has a known, bidder-invariant 
marginal distribution and E[​π​ 1​] > E[​π​ 2​]: license 2 on average has a lower private 
value ​π​ 2​. This is the case in our valuation specification: package observables (to the 
bidders) ​x​J​ and ​∑ j=1​ 

J
  ​ ​ξ​j​​ shift around the mean of valuations. A formal statement of 

BL’s (2002) proposition 2 refers to their condition A, which is a condition on the 
marginal distribution that ensures that even a high-value type would find it profitable 
to implicitly collude and win one item for a low price rather than competing and 
winning both items. As a high-value type a does not know the privately observed 
values of a rival b, this is a condition on the rival b’s mean private value. Remark 3 
in BL (2002) states collusion can take place under different assumptions about the 
private value distribution, i.e., when ​π​ 1​ and ​π​ 2​ have different marginal distributions 
and E[​π​ 1​] > E[​π​ 2​]. A stronger condition on the distribution of each ​π​ j​ is needed 
because the bidder who bids on the item with a lower mean private value must be 
induced to stick with that item and not also compete for the other license in competi-
tive bidding. If collusion is sustainable, it follows roughly the form in the main BL 
(2002) example. However, the specific equilibrium outcome described in Remark 3 
of BL (2002) does not necessarily satisfy pairwise stability in matches only because 
bidders use a multiplicative constant (arising from the particular support conditions 
on the private values in the example used inremark 3 of BL 2002) to modify the 
value of ​π​ 1​ for comparison with ​π​ 2​ when deciding whether to bid on item 2 instead. 
If instead the bidders used the opportunity cost Δπ = ​π​ 1​ − ​π​ 2​ to decide whether to 
open bidding on items 1 or 2, pairwise stability in matches will occur. If BL’s (2002) 
conditions for implicit collusion fail to hold, Remark 1 states competition ensues, 
under which pairwise stability in matches only still holds.

Remark 5: The main BL (2002) example presents just one symmetric, perfect 
Bayesian equilibrium to the game in question. Straightforward bidding is always a 
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symmetric equilibrium, as Remark 1 discusses, for example. Neither BL (2002) or 
EK (2005) claim to find all possible symmetric equilibria to the game. It is possible 
that symmetric equilibria that do not satisfy pairwise stability in matches only exist 
(without changing the assumptions of the main BL 2002 example), although they 
are currently unknown. However, BL (2002) use an equilibrium property known as 
interim efficiency. Proposition 3 in BL (2002) suggests that, under additional condi-
tions, that the outcome in the main example maximizes a “weighted sum of all types’ 
expected surplus,” where the maximization is taken over all incentive compatible 
allocations such that each bidder always receives one object. Thus, proposition 3 in 
BL (2002) uses the property of interim efficiency to suggest that, if possible, bidders 
would want to coordinate on the equilibrium in the main example, rather than some 
arbitrary, undiscovered equilibrium. Thus, the existence of other symmetric, perfect 
Bayesian equilibria that have yet to be found should not dissuade us from considering 
the equilibrium in the main example.

Remark 6: Consider a case where there are ex ante, commonly observed high and 
low-type bidders. For simplicity, say the payoff to bidder a from winning license j is  
​π​ a​ j

 ​ = ​w​a​ · ​y​j​ + ​ϵ​a, j​  , where here the scalar ​y​j​ is a characteristic that raises valuations, 
such as the population of the license. Let the standard deviation and support of the 
mean-zero, i.i.d. private values ​ϵ​a, j​ be small and let ​w​a​ ≫ ​w​b​ and ​y​1​ ≫ ​y​2​, so that  
​π​ a​ 1​ + ​π​ b​ 2​ > ​π​ a​ 2​ + ​π​ b​ 1​ for all realizations of ​ϵ​a, j​. Implicit collusion without signaling 
could occur: the high-type bidder a is allocated license 1 and the low-type bidder 
b is allocated license 2, both at prices of 0. This equilibrium could be sustained 
through threats of competitive bidding if ​π​ a​ 1​ is always sufficiently higher than ​π​ a​ 2​ 
and the loss to a from competitive bidding, the valuations of the rival ​π​ b​ 1​ + ​π​ b​ 2​, is 
sufficiently large. This type of equilibrium does not involve signaling and is based 
on public information (here ​w​a​, ​w​b​, ​y​1​ and ​y​2​ ) rather than private information, so the 
equilibrium strategies are dissimilar to those in the main example, although the out-
comes are quite similar. The equilibrium outcome still satisfies pairwise stability in 
matches only, as the bidders assortatively match to licenses: high w with high y and  
​π​ a​ 1​ + ​π​ b​ 2​ > ​π​ a​ 2​ + ​π​ b​ 1​. Thus, ex ante, commonly observed high- and low-type bidders 
can be compatible with pairwise stability in matches only, even without signaling. 
Altogether, this discussion explains Assumption 1, which says that if valuations are 
monotone in the scalar ​w​a​  , w can be publicly observed.16

Remark 7: Another case is when there are known asymmetries in the values for 
bidders a and b for licenses 1 and 2. For example, bidder a may be known to on 
average have a high private value for license 1, while bidder b may be known to on 
average have a high private value for license 2. Notationally, bidder-and-license-spe-
cific private values ​π​ j​ a​ = ​ϵ​a,j​ have commonly observed, bidder and license specific 
distributions ​F​ a, j​   . This general notation encompasses Remark 6 as a special case. 
Under bidder and license specific distributions, a lot of the information on bidder 

16 Of course, one could construct similar examples (without one of the conditions ​w​a​ ≫ ​w​b​ and ​y​1​ ≫ ​y​2​, per-
haps) where the high-type bidder is assigned the low-type item. These outcomes strike us as unnatural: we cannot 
imagine the pre-game coordination that would lead to a high-value bidder accepting a low-value item.
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idiosyncratic valuations is public and, definitionally, no longer privately observed 
information. Indeed, theorem 5 in EK (2005) allows the distribution of private val-
ues to vary across bidder/item pairs. In that case, there is less need to signal using 
the bidding mechanism to coordinate and pairwise stability in matches only may not 
occur. Intuitively, this type of result just applies a folk-theorem-like result to the pub-
licly observed part of payoffs. For an equivalent of our Lemma 1 to hold, valuations 
must be private or valuations must be monotone in the observed heterogeneity, as 
in the example in Remark 6. Many conditions under which Lemma 1 does not hold, 
in our experience, involve aspects of valuations that are asymmetric across licenses 
and are not privately observed. However, Section IE argued based on institutional 
details that this type of extreme asymmetry was not common in the C block auction. 
As we have discussed, there is little evidence that the major winning bidders were 
local businessmen with pre-announced, bidder- and license-specific valuations for 
particular licenses. Further, colluding based on ex ante known bidder-and-license-
specific asymmetries would not require signaling via the bidding mechanism, as in 
the main BL (2002) example. Section IF and the previous, descriptive empirical 
literature argue that there is evidence of bidders signaling each other using the bid-
ding mechanism, rather than relying on known asymmetries in bidder valuations.

Remark 8: Related to the previous remark is the possibility of asymmetric, per-
fect Bayesian equilibria.17 Asymmetric equilibria are not discussed in BL (2002) 
and EK (2005). Consider a case where E[​π​ j​ ] is high, ​π​ j​ has a small, bounded sup-
port relative to E[​π​ j​ ], and ​π​ 1​ and ​π​ 2​ are independent. Then the equilibrium out-
come, where bidder a wins license 1 at a price of 0, and bidder b wins license 2 at 
a price of 0, is sustainable by the threat of resorting to competitive bidding. The 
cost of competition is so high that the expected value of colluding is high for both 
bidders, even if a has a higher private value for 2 and b has a higher private value 
for license 1. Here the equilibrium is asymmetric because bidder a takes an action 
regardless of its license values. Note that this equilibrium requires no signaling: bid-
ders divide up the items before private values are realized. The empirical evidence 
in the previous literature, and in Section IF, is strongly suggestive that signaling 
took place.18 Thus, relying on the equilibrium refinement of symmetry as in sym-
metric, perfect Bayesian equilibria, seems logical for a first estimator for simultane-
ous ascending auctions with complementarities given the empirical evidence. By 
restricting attention to symmetric equilibria, we follow the theory on the simultane-
ous ascending auction.

Remark 9: Bulow, Levin, and Milgrom (2009) have emphasized the role of bud-
get constraints in a much more recent spectrum auction than the C block. Pairwise 
stability in matches only respects one version of a monetary budget constraint: the 
number of matches of each bidder is the same on the left and right sides of the 

17 Note the two uses of the word “asymmetric”: asymmetric equilibria here and asymmetric bidder valuations 
in Remark 7.

18 One could possibly write down an asymmetric equilibrium with signaling. In that case, the empirical evidence 
of signaling would not be evidence in favor of the symmetry refinements used in BL (2002) and EK (2005).
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inequality. Pairwise stability in matches only does not ask why one bidder did not 
win more licenses at the expense of a rival, only why license ​j​1​ was won by bidder 1 
and license ​j​2​ was won by bidder 2 and not the reverse. Thus, the inequalities in 
pairwise stability in matches only capture some of the spirit of budget constraints. 
We note that almost all other estimators for auctions of a single item do not respect 
budget constraints at all; bids are suggested to be informative of valuations, not 
budget constraints.19

Remark 10: FCC spectrum auctions have eligibility rules. At the end of the C 
block auction, all but two bidders, who were competing for a single license, had 
settled on their final, winning packages. Their final-round eligibilities were only 
slightly above the populations of their winning packages. The condition of pairwise 
stability in matches only is not a statement about the behavior of bidders at the auc-
tion’s final round, when they had no free eligibility. Rather, pairwise stability in 
matches only is a condition on the entire data generating process (all the rounds of 
the auction) and the final allocation that results from the data-generating process. 
The interesting signaling behavior in the BL (2002) and EK (2005) models arise at 
the start of the auction, when bidders’ eligibilities are above the populations of their 
final winning packages.

Remark 11: An additional concern in simultaneous ascending auctions is the 
exposure problem, where a bidder fails to secure additional licenses to complete a 
package, and therefore the bidder prefers to not win a license it did win at the end of 
the auction. Cramton (2006) argues that the price discovery advantages of and the 
withdrawal options in the FCC’s simultaneous ascending auction design mitigate 
any exposure problem. Pairwise stability in matches will still hold under an expo-
sure problem if valuations would not be increased by swapping licenses. Given the 
exposure problem, pairwise stability holds if the bidders are exposed on the “best of 
a bad menu” of licenses.

Appendix B: Demand Reduction and Pairwise Stability, 
without Complementarities

Demand reduction is studied by Ausubel and Cramton (2002) for the case of 
sealed bid auctions of multiple homogeneous items. In a simultaneous ascending 
auction, demand reduction is consistent with straightforward bidding by 
forward-looking agents. Kagel and Levin (2001) and List and Lucking-Reiley 
(2000) find substantial demand reduction in experiments. This section considers 
demand reduction, but in a market without complementarities because of a need 
to refer to a Milgrom (2000) theorem. Because complementarities are the focus of 
our empirical work, we place this material in an Appendix, although we feel the 
results are interesting for the estimation method. Also, Milgrom requires bidders 

19 One estimation approach would be to impose pairwise stability in matches only for exchanges of licenses 
with similar closing prices. Our experiments show that this reduces the empirical power (increases the width of the 
confidence intervals) of the estimator considerably.
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to bid straightforwardly, so this analysis does not distinguish between publicly and 
privately observed information and so does not work with Bayesian Nash equi-
libria. On the other hand, Brusco and Lopomo (2002) and Engelbrecht-Wiggans 
and Kahn (2005) show that competitive bidding is a Bayesian Nash equilibrium to 
simultaneous ascending auctions.

Consider bidders a and b competing for two licenses 1 and 2. Use the shorthand 
notation ​π​ a​ 1,2​ for ​π​a​({1, 2}). Let the valuations of bidders a and b for the three pos-
sible packages be as listed in Table B1, case 1. Bidder a has a higher value for all 
packages. Bidder b has decreasing returns to scale: there is no incremental value 
from winning both licenses.

If both bidders bid straightforwardly in a simultaneous ascending auction, and 
ignoring minimum bid increments, a will win both licenses at prices equal to b’s 
values: ​p​1​ = ​π​ b​ 1​ and ​p​2​ = ​π​ b​ 2​. However, if a reduces its demand and lets b win item 2 
at ​p​2​ = 0, a can win item 1 at ​p​1​ = 0. Bidder b accepts this because it has a demand 
for only one license and prefers 2 to 1. The demand reduction outcome is inefficient: 
valuations are maximized by having a win both items. However, when a wins 1 and 
b wins 2, ​π​ a​ 1​ + ​π​ b​ 2​ > ​π​ a​ 2​ + ​π​ b​ 1​, so that the sum of valuations cannot be increased with 
license swaps. Definition 1 is satisfied as the bidders disagree on the valuation rank-
ing of the licenses. One can use the zero prices to show Definition 2 is satisfied as 
well.

Now we will argue that the example does not rely on bidder disagreement over 
the valuation ranking. Case 2 in Table B1 changes b’s valuations so that a and b 
agree on the valuation ranking of licenses 1 and 2: ​π​ b​ 1​ ≥ ​π​ b​ 2​. At the beginning of 
the auction, with ​p​1​ = ​p​2​ = 0, bidder b will bid on item 1 as b prefers 1 and has a 
demand for only one item. Only at a price ​p​ 1​ ⋆​ such that ​π​ b​ 1​ − ​p​ 1​ ⋆​ = ​π​ b​ 2​ will b accept 
winning license 2 instead of 1. If ​π​ a​ 1​ − ​p​ 1​ ⋆​ > ​π​ a​ 2​, then substituting in ​p​ 1​ ⋆​ = ​π​ b​ 1​ − ​π​ b​ 2​ to  
​π​ a​ 1​ − ​p​ 1​ ⋆​ > ​π​ a​ 2​ again gives ​π​ a​ 1​ + ​π​ b​ 2​ > ​π​ a​ 2​ + ​π​ b​ 1​. Definitions 1 and 2 are satisfied.

What if in case 2, ​π​ a​ 1​ − ​p​ 1​ ⋆​ = ​π​ a​ 1​ − ​( ​π​ b​ 1​ − ​π​ b​ 2​ )​ < ​π​ a​ 2​ ? If a finds it profitable to reduce 
its demand, a will reduce its demand on license 1 and win 2, leaving ​π​ a​ 2​ + ​π​ b​ 1​ > ​π​ a​ 1​ + ​π​ b​ 2​. 
Again, ​p​ 1​ ⋆​ is set, by straightforward bidding, to make a and b coordinate on a pairwise 
stable outcome. Definitions 1 and 2 are satisfied. The points made in this example 
are more general.20

20 The conditions for Milgrom’s tatonnement process theorem rule out complementarities, in part to avoid the 
exposure problem. Definition 1 requires only that sum of valuations not be raised by swapping licenses. It is com-
patible with many forms of the exposure problem. See Remark 11 in Appendix A.

Table B1—Valuations for Two-Bidder Examples of Demand Reduction

Bidder a Bidder b, case 1 Bidder b, case 2

License 1  ​π​ a​ 1​ ≥ ​π​ a​ 2​  ​π​ b​ 1​ ≤ ​π​ a​ 1​, ​π​ b​ 1​ ≤ ​π​ b​ 2​  ​π​ b​ 1​ ≤ ​π​ a​ 1​, ​π​ b​ 1​ ≥ ​π​ b​ 2​ 

License 2  ​π​ a​ 2​ ≤ ​π​ a​ 1​  ​π​ b​ 2​ ≤ ​π​ a​ 2​, ​π​ b​ 2​ ≥ ​π​ b​ 1​  ​π​ b​ 2​ ≤ ​π​ a​ 2​, ​π​ b​ 2​ ≤ ​π​ b​ 1​ 

Both 1 and 2  ​π​ a​ 1,2​ = ​π​ a​ 1​ + ​π​ a​ 2​  ​π​ b​ 1,2​ = max{​π​ b​ 1​, ​π​ b​ 2​}  ​π​ b​ 1,2​ = max{​π​ b​ 1​,​π​ b​ 2​} 



Vol. 5 No. 1� 143fox and bajari: spectrum auctions

Lemma 3: Consider straightforward bidding in a simultaneous ascending auction 
with demand reduction. Under the tatonnement conditions of Milgrom (2000), the 
outcome is a pairwise stable outcome to a matching game where the maximum num-
ber, or quota, of licenses that a bidder can win is the number of licenses the bidder 
won in the outcome. Both Definitions 1 and 2 are satisfied.

Proof: 
Let the allocation portion of the demand reduction outcome be A, and let bidder 

a’s wining package be ​J​a​. For all bidders a, redefine a’s valuation for a package J to 
be negative infinity if J has more licenses than ​J​a​. ​π​a​​( J )​ = −∞ for | J | >| ​J​a​ |. Then 
Milgrom’s (2000) tatonnement process theorems (theorems 2 and 3 in Milgrom 
2000) show that the simultaneous ascending auction will find a competitive equilib-
rium (core outcome) of the economy with the truncated valuation functions. Pairwise 
stability, Definition 2, is implied by being in the core of the economy with truncated 
valuation functions. As the swaps considered in Definition 2 do not change the num-
ber of licenses won by any bidder, the valuations under the swaps are the same as 
under the pre-truncated valuation functions. So the outcome is pairwise stable under 
a matching game where bidders cannot add additional licenses to their package.

Under demand reduction, the outcome may not be efficient, but there is no reason 
to believe that there exist swaps of licenses that would raise sums of valuations. 
The lemma does not explain how much demand reduction will go on: the unilat-
eral incentive to reduce demand requires knowledge that another bidder has strong 
decreasing returns to scale.21

Appendix C. Monte Carlo for Estimator  
with Both Matches and Price Data

Fox (2010a) presents Monte Carlo studies showing that the finite-sample perform
ance of the maximum score estimator, using matches only, is reasonable. However, 
for a small number of bidders and licenses and a high variance of the error term, the 
estimator that uses data only on matches can have high bias and root mean squared 
error (RMSE) in a finite sample, as random noise from the ​ϵ​a, j​ terms dominates the 
matching, leaving little signal in the sorting pattern seen in the data. Like similar 
results in Akkus and Hortacsu (2007), Table C1 reports results from a Monte Carlo 
study from a one-to-one, two-sided matching market. Each bidder a matches to at 
most one license j, and the payoff of a bidder is ​​

_
 π ​​β​​( a, j )​ + ​ϵ​a, j​ = ​x​1,  a​ ​x​1, j​ + β  ​x​2,  a​ ​x​2, j​. 

There are two characteristics for bidders and two for licenses, with characteristics 
for each side distributed as a bivariate normal with means (10, 10), variances (1, 1) 
and covariance 0.5. The errors are i.i.d. normal with standard deviations listed in the 
table. For each auction we draw observable characteristics and unobservable error 

21 The initial eligibilities of other bidders are known before bidding starts. Therefore, some forms of decreas-
ing returns are public knowledge. Further, Cramton (2006) interprets the purchase of spectrum in a small, quick, 
post-auction sale (a bidder did not make its payments) by NextWave as evidence that NextWave was reducing its 
demand during the auction.
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terms and compute an equilibrium assignment and vector of prices using the primal 
and dual linear programs for two-sided matching (Koopmans and Beckmann 1957; 
Shapley and Shubik 1971). The true β is 1.5. The example is chosen to make using 
only matches look bad: there is not much signal about ​​

_
 π ​​β​ in the sorting patterns if 

the realized matches are visually plotted in characteristic space, especially in the 
second half of the table where the standard deviation of ​ϵ​a,   j​ is five times higher than 
in the upper part of the table. Note that, for the C block, the map in Figure 1 shows 
that there are clear sorting patterns; this Monte Carlo study makes using match data 
bad to show the potential advantages of using price data. The finite-sample bias and 
RMSE are always much lower with continuous transfer data, even though the data 
on matches alone are uninformative. For all four cases the absolute value of the bias 
is small for small samples, and for three of the four cases the RMSE is low com-
pared to the true value of 1.5.

Table C1 shows a major advantage of using price data: the finite-sample performance 
is much better if prices are generated from a tatonnement process. There are several 
advantages to using only match data, even if the prices are generated by a tatonnement 
process. This first is transparency: there is only one type of dependent variable, so 
inferring parameters from the US map of winning bidders is straightforward. With two 
types of dependent variables, it is not as clear where identification arises from. The sec-
ond is robustness. In this paper, we review models where prices are not generated by a 
tatonnement process, but the matches are still robust to pairwise swaps.

REFERENCES

Akkus, Oktay, and Ali Hortaçsu. 2007. “The Determinants of Bank Mergers: A Revealed Preference 
Analysis.” University of Chicago Working Paper.

Athey, Susan, and Philip A. Haile. 2007. “Nonparametric Approaches to Auctions.” In Handbook of 
Econometrics, Vol. 6 Part A, edited by James J. Heckman and Edward E. Leamer, 3847–3965. 
North Holland: Elsevier.

Ausubel, Lawrence M., and Peter Cramton. 2002. “Demand Reduction and Inefficiency in Multi-Unit 
Auctions.” University of Maryland Working Paper.

Ausubel, Lawrence M., Peter Cramton, R. Preston McAfee, and John McMillan. 1997. “Synergies 
in Wireless Telephony: Evidence from the Broadband PCS Auctions.” Journal of Economics and 
Management Strategy 6 (3): 497–527.

Avery, Christopher. 1998. “Strategic Jump Bidding in English Auctions.” Review of Economic Stud-
ies 65 (2): 185–210.

Bajari, Patrick, and Ali Hortaçsu. 2005. “Are Structural Estimates of Auction Models Reasonable? 
Evidence from Experimental Data.” Journal of Political Economy 113 (4): 703–41.

Table C1—Maximum Score Monte Carlo: Comparing Using Data on Only Matches 
to Data on Both Matches and Prices Under Tatonnement Assumptions  

with Noise-Dominating Matches, True Value is 1.5

Matches Matches + Prices

Number of
bidders

Number of licenses
per auction

Number of spectrum
auctions

Error
SD Bias RMSE Bias RMSE

30 30 1 1 0.587 1.93 0.005 0.03
10 10 10 1 0.330 1.05 0.009 0.07
30 30 1 5 1.22 4.22 0.02 0.09
10 10 10 5 1.69 7.36 −0.02 0.446



Vol. 5 No. 1� 145fox and bajari: spectrum auctions

Bajari, Patrick, Jeremy T. Fox, and Stephen P. Ryan. 2008. “Evaluating Wireless Carrier Consolidation 
Using Semiparametric Demand Estimation.” Quantitative Marketing and Economics 6 (4): 299–338.

Banks, Jeffrey, Mark Olson, David Porter, Stephen Rassenti, and Vernon Smith. 2003. “Theory, 
experiment and the federal communications commission spectrum auctions.” Journal of Economic 
Behavior and Organization 51 (3): 303–50.

Brusco, Sandro, and Giuseppe Lopomo. 2002. “Collusion via Signalling in Simultaneous Ascending 
Bid Auctions with Heterogenous Objects, with and without Complementarities.” Review of Eco-
nomic Studies 69 (2): 407–36.

Bulow, Jeremy, Jonathan Levin, and Paul Milgrom. 2009. “Winning Play in Spectrum Auctions.” 
Stanford University Working Paper. 

Cantillon, Estelle, and Martin Pesendorfer. 2006. “Combination Bidding in Multi-Unit Auctions.” 
Université Libre de Bruxelles Working Paper.

Chapman, James T. E., David McAdams, and Harry J. Paarsch. 2007. “Bounding Revenue Compari-
sons across Multi-Unit Auction Formats under ε-Best Response.” American Economic Review 97 
(2): 455–58.

Chiappori, Pierre-André, Bernard Salanié, and Yoram Weiss. 2010. “Partner Choice and the Marital 
College Premium.” Columbia University Working Paper.

Choo, Eugene, and Aloysius Siow. 2006. “Who Marries Whom and Why.” Journal of Political Econ-
omy 114 (1): 175–201.

Coase, Ronald H. 1959. “The Federal Communications Commission.” Journal of Law and Econom-
ics 2 (1): 1–40.

Cramton, Peter. 2006. “Simultaneous Ascending Auctions.” In Combinatorial Auctions, edited by 
Peter Cramton, Yoav Shoham, and Richard Steinberg, 99–114. Cambridge, MA: MIT Press.

Cramton, Peter, and Jesse A. Schwartz. 2000. “Collusive Bidding: Lessons from the FCC Spectrum 
Auctions.” Journal of Regulatory Economics 17 (3): 229–52.

Cramton, Peter, and Jesse A. Schwartz. 2001. “Collusive Bidding in the FCC Spectrum Auctions.” B. 
E. Journal of Economic Analysis & Policy 1 (1): Article 15.

Cramton, Peter, Yoav Shoham, and Richard Steinberg, eds. 2006. Combinatorial Auctions. Cam-
bridge, MA: MIT Press.

Crawford, Vincent P., and Elsie Marie Knoer. 1981. “Job Matching with Heterogeneous Firms and 
Workers.” Econometrica 49 (2): 437–50.

Dagsvik, John K. 2000. “Aggregation in Matching Markets.” International Economic Review 41 (1): 
27–57.

Day, Robert, and Paul Milgrom. 2008. “Core-Selecting Package Auctions.” International Journal of 
Game Theory 36 (3–4): 393–407.

Demange, Gabrielle, David Gale, and Marilda A. Oliveira Sotomayor. 1986. “Multi-Item Auctions.” 
Journal of Political Economy 94 (4): 863–72.

Edelman, Benjamin, Michael Ostrovsky, and Michael Schwarz. 2007. “Internet Advertising and the 
Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords.” American 
Economic Review 97 (1): 242–59.

Engelbrecht-Wiggans, Richard, and Charles M. Kahn. 2005. “Low-Revenue Equilibria in Simultane-
ous Ascending-Bid Auctions.” Management Science 51 (3): 508–18.

Février, Philippe, Raphaelle Préget, and Michael Visser. 2004. “Econometrics of Share Auctions.” 
Center for Research in Economics and Statistics (CREST) Working Paper 2002-09.

Fox, Jeremy T. 2010a. “Estimating Matching Games with Transfers.” University of Michigan Work-
ing Paper. 

Fox, Jeremy T. 2010b. “Identification in Matching Games.” Quantitative Economics 1 (2): 203–54.
Fox, Jeremy T., and Patrick Bajari. 2013. “Measuring the Efficiency of an FCC Spectrum Auction: 

Dataset.” American Economic Journal: Microeconomics. http://dx.doi.org/10.1257/mic.5.2.100.
Fox, Jeremy T., and Hector Perez-Saiz. 2006. “Mobile Phone Mergers and Market Shares: Short Term 

Losses and Long Term Gains.” Networks, Electronic Commerce, and Telecommunications (NET) 
Institute Working Paper 06-16.

Gentzkow, Matthew. 2007. “Valuing New Goods in a Model with Complementarity: Online Newspa-
pers.” American Economic Review 97 (3): 713–44.

Haile, Philip A., and Elie Tamer. 2003. “Inference with an Incomplete Model of English Auctions.” 
Journal of Political Economy 111 (1): 1–51.

Han, Aaron K. 1987. “Non-parametric analysis of a generalized regression model: The maximum rank 
correlation estimator.” Journal of Econometrics 35 (2–3): 303–16.

Hatfield, John William, and Paul R. Milgrom. 2005. “Matching with Contracts.” American Economic 
Review 95 (4): 913–35.

http://dx.doi.org/10.1257/mic.5.2.100


146	 American Economic Journal: Microeconomics�feb ruary 2013

Hong, Han, and Matthew Shum. 2003. “Econometric models of asymmetric ascending auctions.” 
Journal of Econometrics 112 (2): 327–58.

Horowitz, Joel L. 1992. “A Smoothed Maximum Score Estimator for the Binary Response Model.” 
Econometrica 60 (3): 505–31.

Hortaçsu, Ali, and David McAdams. 2010. “Mechanism Choice and Strategic Bidding in Divisible 
Good Auctions: An Empirical Analysis of the Turkish Treasury Auction Market.” Journal of Politi-
cal Economy 118 (5): 833–65.

Kagel, John H., and Dan Levin. 2001. “Behavior in Multi-Unit Demand Auctions: Experiments with 
Uniform Price and Dynamic Vickrey Auctions.” Econometrica 69 (2): 413–54.

Kastl, Jakub. 2011. “Discrete Bids and Empirical Inference in Divisible Good Auctions.” Review of 
Economic Studies 78 (3): 974–1014.

Kelso, Alexander S., Jr., and Vincent P. Crawford. 1982. “Job Matching, Coalition Formation, and 
Gross Substitutes.” Econometrica 50 (6): 1483–1504.

Koopmans, Tjalling C., and Martin Beckmann. 1957. “Assignment Problems and the Location of Eco-
nomic Activities.” Econometrica 25 (1): 53–76.

Krasnokutskaya, Elena. 2011. “Identification and Estimation of Auction Models with Unobserved 
Heterogeneity.” Review of Economic Studies 78 (1): 293–327.

Kwasnica, Anthony M., and Katerina Sherstyuk. 2007. “Collusion and Equilibrium Selection in Auc-
tions.” Economic Journal 117 (516): 120–45.

Leonard, Herman B. 1983. “Elicitation of Honest Preferences for the Assignment of Individuals to 
Positions.” Journal of Political Economy 91 (3): 461–79.

List, John A., and David Lucking-Reiley. 2000. “Demand Reduction in Multiunit Auctions: Evidence 
from a Sportscard Field Experiment.” American Economic Review 90 (4): 961–72.

Manski, Charles F. 1975. “Maximum Score Estimation of the Stochastic Utility Model of Choice.” 
Journal of Econometrics 3 (3): 205–28.

Matzkin, Rosa L. 1993. “Nonparametric identification and estimation of polychotomous choice mod-
els.” Journal of Econometrics 58 (1–2): 137–68.

McAfee, R. Preston, and John McMillan. 1996. “Analyzing the Airwaves Auction.” Journal of Eco-
nomic Perspectives 10 (1): 159–75.

Milgrom, Paul. 2000. “Putting Auction Theory to Work: The Simultaneous Ascending Auction.” Jour-
nal of Political Economy 108 (2): 245–72.

Milgrom, Paul R., and Robert J. Weber. 1982. “A Theory of Auctions and Competitive Bidding.” 
Econometrica 50 (5): 1089–1122.

Moreton, Patrick S., and Pablo T. Spiller. 1998. “What’s in the Air: Interlicense Synergies in the Fed-
eral Communications Commission’s Broadband Personal Communication Service Spectrum Auc-
tions.” Journal of Law and Economics 41 (S2): 677–716.

Newey, Whitney K., and Daniel McFadden. 1994. “Large Sample Estimation and Hypothesis Testing.” 
In Handbook of Econometrics, Vol. 4, edited by Robert F. Engle and Daniel L. McFadden, 2111–
2245. Amsterdam: Elsevier.

Paarsch, Harry J., and Han Hong. 2006. An Introduction to the Structural Econometrics of Auction 
Data. Cambridge: MIT Press.

Politis, Dimitris N., and Joseph P. Romano. 1994. “Large Sample Confidence Regions Based on Sub-
samples under Minimal Assumptions.” Annals of Statistics 22 (4): 2031–50.

Shapley, Lloyd S., and Martin Shubik. 1971. “The assignment game I: The core.” International Jour-
nal of Game Theory 1 (1): 111–30.

Sherman, Robert P. 1993. “The Limiting Distribution of the Maximum Rank Correlation Estimation.” 
Econometrica 61 (1): 123–37.

Sørensen, Morten. 2007. “How Smart Is Smart Money? A Two-Sided Matching Model of Venture Cap-
ital.” Journal of Finance 62 (6): 2725–62.

Storn, Rainer, and Kenneth Price. 1997. “Differential Evolution—A Simple and Efficient Heuristic 
for Global Optimization over Continuous Spaces.” Journal of Global Optimization 11 (4): 341–59.

Wolak, Frank A. 2007. “Quantifying the Supply-Side Benefits from Forward Contracting in Wholesale 
Electricity Markets.” Journal of Applied Econometrics 22 (7): 1179–1209.


	Measuring the Efficiency of an FCC Spectrum Auction
	I. Background for the C Block Auction
	A. FCC Spectrum Auctions for Mobile Phones
	B. After the Auction: Mergers
	C. Auction Rules and Bidder Characteristics
	D. Prices and Winning Packages
	E. Suggestive Evidence on Complementarities
	F. Suggestive Evidence about Intimidatory Collusion

	II. Valuation Functions
	A. Bidders’ Valuation Functions
	B. Assumptions
	C. Three Proxies for Potential Complementarities

	III. Pairwise Stability
	A. Pairwise Stability and Other Properties of Auction Outcomes
	B. Experimental Evidence on Pairwise Stability
	C. Lack of Swapping Licenses after the Auction
	D. Results of Brusco and Lopomo (2002) and 
Engelbrecht-Wiggans and Kahn (2005)
	E. Demand Reduction
	F. Existence of a Pairwise Stable Allocation under Complementarities

	IV. The Estimator
	A. Estimator
	B. Consistency and Inference
	C. Nonparametric Identification of Features of the Valuation Function

	V. Main Estimates of Valuation Functions
	VI. Estimators Using Other Inequalities
	A. Estimates with Forced Transfers of Licenses
	B. Estimates with Prices

	VII. Counterfactual Efficiencies and Policy Implications
	A. Actual and Counterfactual Deterministic Efficiencies
	B. Policy Implications for Bidder Anonymity
	C. Bidders with Overly Optimistic Beliefs
	D. Competitive Scale-Reducing Economic Forces
	E. Producer versus Consumer Surplus

	VIII. Conclusions
	Appendix A: Remarks about Generalizations 
to the Main BL (2002) Example
	Appendix B: Demand Reduction and Pairwise Stability,
without Complementarities
	Appendix C. Monte Carlo for Estimator 
with Both Matches and Price Data
	REFERENCES


