
A Toolkit for Matching Maximum Score
Estimation and Point and Set Identified

Subsampling Inference∗

Jeremy T. Fox
University of Michigan and NBER†

David Santiago
University of Chicago (former)

February 2015

Contents
1 Introduction 2

2 Installation 2
2.1 Places Mathematica Checks . 2
2.2 Telling Mathematica Where To Look 3

3 Review of Maximum Score Estimation 3

4 Data Model 4
4.1 The Matching Problem . 5
4.2 Data . 5
4.3 Objective Function . 6

5 Using the Toolkit 7
5.1 Write an Objective Function . 7
5.2 Create a Data Array and Data Map 8

5.2.1 The Data Array . 8
5.2.2 The Data Map . 9
5.2.3 A Marriage Example . 10

5.3 Call the Estimation Routine . 11
5.4 Generate Confidence Regions . 11
∗Thanks to Theodore Chronis, Denisa Mindruta, Joao Montalvao, and Azeem Shaikh for comments.
†Jeremy T. Fox, University of Michigan, Ann Arbor, MI 48109, e-mail: jeremyfox@gmail.com.

1

6 Advanced Topics 13
6.1 Controlling the Maximization Parameters 13
6.2 Performance Tips . 14
6.3 Smoothed Maximum Score . 17

1 Introduction
Certain economic situations are well-described by matching games, where a finite num-
ber of agents are rivals to match with a limited number of goods or other agents. For
example, Bajari and Fox (2005) use a matching model to analyze an FCC spectrum
auction (where companies are rivals to assemble complementary packages of licenses),
and Akkus (2006) uses a matching model to study the merging decisions of banks. Fox
(2006) introduces a maximum score estimator for the parameters of the production
function for match output. The estimator is semiparametric as it does not require the
full specification of the stochastic structure.

This document serves two purposes. The primary purpose is to document the Match
Estimation toolkit, a Mathematica package that eases the use of the pairwise maximum
score estimator. Empirical researchers can use the routines in the package for estima-
tion and inference in a variety of models. The package supports a number of variations
on the main estimator. A secondary goal of this paper is to describe in detail the im-
plementation of the toolkit, so that other researchers can more easily implement the
estimator in different languages. Several key insights that make the estimation process
significantly faster are discussed, and should be useful in many different computing
environments.

2 Installation
The Match Estimation toolkit consists of software written in Mathematica. Preparing
Mathematica to use the software is simply a matter of either putting the software in
a place where Mathematica will automatically look for it, or telling Mathematica its
location.

2.1 Places Mathematica Checks
The Mathematica documentation gives a complete list of the locations the runtime
system checks when Mathematica loads, and the correct one to pick will depend on
the specific directories you have access to, and which users should have access to the
software.

One location that is usually accessible and convenient is the user’s add-on direc-
tory. Installing the Match Estimation toolkit involves simply copying the files into the
appropriate subdirectory of the user add-on directory.

To determine the user add-on directory, first evaluate the expression

$UserAddOnsDirectory

2

Find that location on your filesystem, enter the Applications subdirectory, and
place the files into a directory called MatchEstimation. Thus, the file MatchEstimation.m
will be in the directory

$UserAddOnsDirectory/Applications/MatchEstimation

2.2 Telling Mathematica Where To Look
The other option is to tell Mathematica where to look for the files before you load them.
If the file MatchEstimation.m is not in a standard directory, it must be placed into
the current directory before use. An easy way to set the current directory is using the
SetDirectory command. If the files are in the same directory as the notebook using
them, a convenient line to evaluate at the beginning of a notebook is

SetDirectory[ToFileName[Extract["FileName" /.
NotebookInformation[EvaluationNotebook[]], {1}, FrontEnd‘FileName]]];

Following the execution of this line, the toolkit can be loaded with the statement

Needs[“MatchEstimation‘”]

3 Review of Maximum Score Estimation
The maximum score estimator introduced in Manski (1975) is an extremum estimator
similar to the maximum likelihood estimator. While the maximum likelihood estimator
is the parameter vector maximizing the likelihood function, the maximum score estima-
tor is the parameter vector maximizing the score, the number of observations correctly
predicted by the discrete choice model. The objective function for the maximum score
estimator is generally a summation over an indicator function 1[·] that evaluates to one
when its argument is true, and zero otherwise:

Qn(β) = ∑1[·].

The maximum score estimator is consistent under weak conditions on the distribution
of the error term. Specifically, the choice probabilities for a given agent must be rank
ordered by the deterministic part of the choice payoff. The maximum score estima-
tor is semiparametric, since it does not require the full parametric specification of the
stochastic structure of the model, aside from the rank order property. The semipara-
metric nature of the estimator, combined with its easily computed objective function,
makes maximum score an attractive choice for computationally difficult models.

The maximum score estimator has some drawbacks. The estimator converges at the
rate 3
√

n, instead of the more common
√

n, and its limiting distribution is too complex to
use for inference (Kim and Pollard, 1990). Abrevaya and Huang (2005) show that the
bootstrap is also inconsistent for maximum score. To work around these difficulties,
there are two ways to do inference on a maximum score estimator.

3

The first, proposed by Horowitz (1992), is called smoothed maximum score (see
Section 6.3). Smoothing the objective function results in an estimator that converges
almost as fast as

√
n. Horowitz also shows that it is asymptotically normal, with a

covariance matrix that can be estimated for use in inference.
The second option is to use the subsampling procedure, which is described in detail

in Politis, Romano and Wolf (1999). Subsampling is a resampling procedure simi-
lar to the bootstrap. The bootstrap procedure generates an estimate of the asymptotic
sampling distribution by generating draws from a distribution similar to the true sam-
pling distribution: the sampling distribution of the estimator when samples of size n
are drawn from the dataset with replacement. In contrast, the subsampling procedure
estimates the asymptotic sampling distribution by sampling the estimator for samples
of size b� n, but which are drawn from the dataset without replacement. Therefore,
the subsampled “datasets” are valid samples of size b from the original data generating
process, while the bootstrap samples are not. Because of this, subsampling does not
require the smoothness conditions required by the bootstrap for consistency.

Suppose that the maximum score estimator β̂n(X1, ...,Xn) is a point-identified esti-
mator of some parameter β . Let Jn be the sampling distribution of τn(β̂n−β) based on
sample of size n, where τn is a sequence such that the distribution of the statistic is not
degenerate, and assume that Jn converges to a limiting distribution J as n→ ∞.

The empirical distribution of the estimator can be approximated as

Ln(x) =
1
B

B

∑
i=1

1[τb(β̂b(Xsi,1 , ...,Xsi,b)− β̂n)≤ x],

where si is a subset of {1, ...,n} of size b� n, and there are B such subsets. Politis,
Romano and Wolf show that if b→ ∞ and b/n→ 0 as n→ ∞, then Ln(x)→ J(x) in
probability. This approximation to the limiting distribution of the estimator allows the
calculation of confidence intervals.

In certain settings, the maximum score estimator is not point-identified. For exam-
ple, in the matching maximum score estimator introduced in Fox (2006) and discussed
below, certain assumptions lead to an estimator that is only set-identified. In these
situations, inference becomes more difficult, as a confidence region must be gener-
ated for an entire set. Chernozhukov, Hong and Tamer (2005) and Shaikh (2005) are
two recent papers that provide algorithms for estimating a confidence region for a set-
identified estimator. The Match Estimation toolkit uses the latter algorithm to estimate
set-identified confidence regions.

4 Data Model
The Match Estimation toolkit can deal with many types of data and many functional
forms for the models it estimates. In order to do this it makes certain assumptions about
the layout of the data that it will work with. The following sections document the data
formats the toolkit uses for either input or output.

4

4.1 The Matching Problem
In a matching problem, the basic unit of analysis is a “market,” which consists of two
distinct groups of people or entities, called the “upstream” and “downstream” sides of
the market. People can conceivably match with one person in the other group, a group
of people in the other group, or agents can form a coalition consisting of people in
both groups. These three cases are called one-to-one, one-to-many, and many-to-many
matching.

The econometrician observes the matches that agents in a market have formed, as
well as certain characteristics of each of the agents in the market. The total payoff for a
given matched coalition can be written as a function of the characteristics of the agents
in the coalition. The goal of the econometrician is to estimate the unknown parameters
of the match payoff function from the matches observed.

The econometrician must make a decision about how the data are generated. The
econometrician may have data containing all of the agents in a number of independent
markets sampled from a much larger number of such markets. In this case, the logic of
the asymptotics for consistency is that the econometrician is expected to observe more
and more such markets. Fox (2006) shows the consistency of the matching maximum
score estimator in this case.

It is also possible that the data is a sample of some of the coalitions in a single large
market. The logic of the asymptotics in this case is that the econometrician expects to
observe more and more coalitions from this large market. There has been some previ-
ous work on models of this sort. Han (1987) introduced an estimator for single-agent
ordered choice in a similar setting, which he called the maximum rank correlation
estimator. Sherman (1993) showed that this estimator is

√
H-consistent and asymptot-

ically normal, where H is the number of observed matches. Fox (2006) shows that the
matching maximum score estimator is consistent in the single large market setting as
well.

4.2 Data
The econometrician is assumed to have data on the agents and their matches in a num-
ber of markets. The markets are assumed to be numbered, though the ordering is not
important. Each participant on each side of a market is also numbered (again, the or-
dering is not important). Therefore, each agent in the dataset can be uniquely identified
by a market number, a side of the market, and its index for that side of the market.

A match can be specified by a market number and two lists of numbers indi-
cating the agents on each side of the market for a given coalition. For one-to-one
matching, this will mean that a match is identified by a tuple {m, i, j}, indicating the
market number, and the indexes of the two agents on each side of the market (up-
stream then downstream). More generally, a many-to-many coalition can be written
as {m,{i1, ...},{ j1, ...}}. In the special case that a match payoff in a many-to-many
model is additively separable across the individual one-to-one matches, it may be more
convenient to consider the coalition as a list of {m, i, j} tuples whose individual payoffs
are then added together.

5

4.3 Objective Function
Estimation is computationally the maximization of the objective function, so the ob-
jective function is the key input into the routines in the Match Estimation package. The
code in the package can do a lot of the work involved in estimating matching games,
but it cannot know the objective function required for your task. Therefore, the or-
ganizing idea of the estimation code is a challenge-response mechanism: when you
call a routine, you must supply an objective function taking a parameter vector as an
argument. Since this mechanism provides the objective function value for any value
of the parameter vector that Match Estimation requires, the code is able to generate an
estimate.

The maximum score objective function is the score function, the number of data
points predicted correctly by the model. In the simplest case of one-to-one match-
ing, the score function is evaluated at a parameter value β by considering all pairs of
matches in each market, and considering the hypothetical match payoff if two upstream
members of each match switched downstream members. If the total payoff of the match
as observed is higher at β than the payoff function when they switch partners, then the
score is increased by one, since the partners have matched themselves as this value of
β would predict. This is expressed as

Q(β)= ∑
m∈M

∑
i∈Um

∑
j∈Um\i

1[fβ (m, i,µm(i))+ fβ (m, j,µm(j))> fβ (m, i,µm(j))+ fβ (m, j,µm(i))]

where fβ is the payoff function of the match evaluated at the parameter vector β , M is
the set of markets observed, Um is the set of upstream coalition members in market m,
and Um\i is the set of upstream coalition members in market m excluding member i.
The function µm(·) is used to reference the downstream partner of the upstream agent
in market m. In the Match Estimation toolkit, the function fβ is not limited to any
specific functional form.

In more general matching situations, such as many-to-many matching, the objective
function is slightly more complex. Since there can be an arbitrary number of members
on each side of a match, the total match payoff must involve a sum over the coali-
tion members in each inequality being considered. This is most easily expressed by
summing over the set of inequalities being considered.

Q(β) = ∑
m∈M

∑
{CLHS,CRHS}∈Im

1[∑
~a∈CLHS

fβ (~xa)> ∑
~a∈CRHS

fβ (~xa)]

In this notation, M is a set of markets and Im is a set of inequalities to be compared.
Each element of Im is a pair of sets of coalitions {CLHS,CRHS}, one of which is observed
and one of which is a hypothetical variation of the other. The total match payoff on
each side of the inequality sign is summed over the total payoffs of all of the coalitions
being considered, and the payoff functions are written as a function of the covariates
~xa of each coalition in the set of coalitions being considered. Note that the simpler
one-to-one score function above can be written in this form by considering Im to be
the set of all pairs of upstream agents joined with their observed or hypothetical match
partners.

6

The objective function needs to be normalized for any purpose that requires it to
have an asymptotic limit. Since there are two ways to generate more data, and thus two
different limiting objective functions, there are two different normalizations. If data
will be added by observing more markets, then the objective function should be divided
by M, the number of markets. On the other hand, if there is one big, static market, and
more and more matches from this market will be observed, then the objective function
should be normalized by dividing by H(H− 1), where H is the number of coalitions
observed; note that H(H− 1)/2 is the number of comparisons that will be performed
in the nested sums.

Functions in Match Estimation that require an approximation to the asymptotic
objective function will perform the normalization internally.

5 Using the Toolkit
The basic process for using the toolkit for estimation is as follows:

1. Write an objective function that is specified up to unknown parameters

2. Create the data array and data map for the objective function

3. Call the estimation routines with an objective function and data matrix

5.1 Write an Objective Function
In order to enable the full functionality of the Match Estimation toolkit, the package
requires not only the value of the objective function for given parameter values, but
also the ability to evaluate the objective function on smaller, hypothetical datasets that
it generates. For example, to calculate confidence regions the toolkit must generate
smaller datasets by sampling from the full dataset, and then calculate an estimate from
the smaller datasets. Therefore, the toolkit requires that the data used in estimation be
given in a specific form, so that it can correctly generate these smaller datasets.

As described in section 4.3, the objective function is the sum of the indicator func-
tion evaluated over a set of inequalities. Removing agents from the sample requires
knowing which inequalities correspond to comparisons involving the agents being re-
moved. The approach taken in this software is to require the objective function to ac-
cept two arguments: the hypothesized parameter values and a “data array” (described
in detail in the following section). Thus, an objective function for the purposes of max-
imum score estimation is a function that takes a data array and a set of parameter values
as arguments and returns an integer representing the number of inequalities in the ob-
jective function that were correctly predicted. For example, such a function could be
called as

objective[dataArray_, b_, g_]

The first argument is always the data array parameter, after which any number of ar-
guments can follow. The objective function must not assume the data array is of any
specific size.

7

For example, the following is a simple implementation of the maximum score ob-
jective function with one parameter to be estimated:

objective[data_,b_] := Module[{total, i},
total = 0;
For[i=1, i <= Length[data], i = i+1,

total += If[data[[1,i]] + b*data[[2,i]] > 0,1,0];
] ;
total

]

The function loops over the data array and adds one to the total score for each inequality
that is correctly predicted according to the data. A more efficient implementation of
the objective function is described in section 6.2.

5.2 Create a Data Array and Data Map
5.2.1 The Data Array

All of the data used to evaluate the objective function must be packed into a list struc-
ture. Since multiple numerical values are required to evaluate a single inequality, a
natural form for the ith element of the data array is itself a list, making the data array
a list of lists, which can be thought of as a matrix in Mathematica. All data used in
the evaluation of inequality i must be in the ith column of this matrix. In the course
of estimating confidence regions, the toolkit will remove columns from the matrix and
call the objective function with these smaller data arrays. This is why the objective
function must not assume the data array is a certain size. Writing an objective function
that does not meet the requirement that all data for a given inequality come from the
corresponding column of the data array will result in nonsense estimates.

It may be easier to think of the data array as a list of vector-valued variables. If
there are four variables that are used in each inequality, say var1 through var4, then
these four variables would be vectors containing the data value for each inequality. The
data array would be the list

{var1, var2, var3, var4}

As an example, suppose that the payoff function for a given match has one parameter
β , and the payoff function has the form

fβ (i, j) = xiy j +βwiz j

A single inequality of the objective function, let’s say the first inequality, will consider
the total payoff of two matches against the payoff if they switch their partners:

1[fβ (i, j)+ fβ (q,u)> fβ (i,u)+ fβ (q, j)]

which is equivalent to

8

1[xiy j +βwiz j + xqyu +βwqzu > xiyu +βwizu + xqy j +βwqz j]

A simple implementation of this inequality would require 8 values:

xiy j,wiz j,xqyu,wqzu,xiyu,wizu,xqy j,wqz j

These 8 quantities would be the elements of the list going into the first element of the
data array. Thus, we might have a data array whose transpose looks like:

{{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0},
{... data for inequality 2 ...},

...}

A later section will suggest a better way to implement this objective function and data
array.

5.2.2 The Data Map

An important related issue is how to communicate the contents of each element of the
data array to the Match Estimation toolkit. In a typical situation, the toolkit might
need to evaluate a subset of the data where agent q (continuing the above example)
has been removed. This means that any inequality that references agent q must not be
evaluated. To implement this, the toolkit will remove any elements from the data array
that reference agent q. The problem is then how to tell the Match Estimation routines
which elements of the data array correspond to which agents. This is achieved with a
secondary data structure, the data map.

The data map is also a list of lists. The elements of the top-level lists of the two data
structures must match, so that the first list in the data map describes the elements of the
first list in the data array. The contents of the data map are left entirely to the user, and
it can be anything that the user might want the software to select subsamples according
to. For example, if the data contains information on multiple separate markets, the
user might want the subsampling routine to generate smaller datasets by selecting a
sample of markets from the full dataset. In this case, each row of the data map would
contain the market number of the agents in the inequality for that row of the data array.
Similarly, if the subsampling is to be done agent-by-agent, the data map would contain
the identifier numbers of the agents involved in each inequality.

To continue the example from before, suppose the data array’s first five elements
are data for inequalities between elements in the first nest and asymptotics are in the
number of nests observed. Then the data map would take the form

{{1}, {1}, {1}, {1}, {1},....}

On the other hand, if the asymptotics are in the number of coalitions in one big market,
then the data map may take the form

{{1,2},{1,3},{1,4},...}

In this case, the first inequality is between upstream agents 1 and 2, the second is
between upstream agents 1 and 3, and so forth.

9

5.2.3 A Marriage Example

To illustrate the creation of the data array from a more standard data format, suppose
that a dataset contains a collection of 5 men and 5 women. For each person, xi is person
i’s years of schooling and yi is person i’s yearly income. The marriage production
function for man i and woman j is

u(i, j) = xix j +βyiy j

Suppose that in Mathematica, this dataset is represented by three arrays. The first,
x[[i]], contains the years of schooling of person i, and the second, y[[i]], con-
tains the yearly income of person i. A third matrix mate[[i]] contains the index of
person i’s partner for those indexes such that i is male. Therefore, x[[mate[[i]]]]
contains man i’s wife’s years of schooling. Assume that the men are indexed by
i = {1,2,3,4,5}.

In order to use the toolkit, this dataset must be converted into a data array. The fol-
lowing blocks of code illustrate the intuition behind this process on a simple example.

ineqL = {};
Do[

Do[
ineqL = Append[ineqL, {i, j}];

,{j,i+1,5}],
{i,1,5}];

The first block of code creates a list of all possible pairs of men. These pairs of men will
hypothetically exchange partners for the evaluation of the maximum score objective
function.

ob1=Table[x[[ineqL[[ineq, 1]]]]*x[[mate[[ineqL[[ineq, 1]]]]]]
+ x[[ineqL[[ineq, 2]]]]*x[[mate[[ineqL[[ineq, 2]]]]]],
{ineq, 1, Length[ineqL]}];

ob2=Table[y[[ineqL[[ineq, 1]]]]*y[[mate[[ineqL[[ineq, 1]]]]]]
+ y[[ineqL[[ineq, 2]]]]*y[[mate[[ineqL[[ineq, 2]]]]]],
{ineq, 1, Length[ineqL]}];

cf1=Table[x[[ineqL[[ineq, 1]]]]*x[[mate[[ineqL[[ineq, 2]]]]]]
+ x[[ineqL[[ineq, 2]]]]*x[[mate[[ineqL[[ineq, 1]]]]]],
{ineq, 1, Length[ineqL]}];

cf2=Table[y[[ineqL[[ineq, 1]]]]*y[[mate[[ineqL[[ineq, 2]]]]]]
+ y[[ineqL[[ineq, 2]]]]*y[[mate[[ineqL[[ineq, 1]]]]]],
{ineq, 1, Length[ineqL]}];

dataArray = {ob1, ob2, cf1, cf2};

These lines create the actual data array. The data array will have four elements per
inequality; ob1 and ob2 correspond to the covariates xixmate(i) and yiymate(i), which
are the covariates of the matches observed in the data, while cf1 and cf2 are the
counterfactual covariates created by switching the mates of men i and j. The code

10

implements this by looping through the inequality list created in the previous code
block and creating these quantities for each inequality.

A simple objective function that takes this data array as an argument and calculates
the maximum score objective function based on the match utility function above can
be written as

objective[data_,b_] := Module[{total, i},
total = 0;
For[i=1, i <= Length[ineqL], i = i+1,

total += If[data[[1,i]] + b*data[[2,i]]
> data[[3,i]] + b*data[[4,i]],1,0];

] ;
total

]

For each inequality, this function adds one to the score only if the match production
function at parameter value b is greater for the observed match than at the counter-
factual match. Note that the iteration is over the number of inequalities. Section 6.2
explains how this objective function can be written to evaluate much faster, resulting
in significant speed gains for estimation and inference. The appendix describes rou-
tines, such as allPairsInequalityList, and associated data structures that can
be used to automate the generation of inequality lists for more general datasets that
include observations on multiple markets. Code to convert the output of these routines
to a data array is only slightly more complex than the code above.

5.3 Call the Estimation Routine
The main estimation routine is pairwiseMSE. It takes three arguments: an objective
function, a data array, and a list of symbols naming the unknown parameters. The result
of the routine will be a list with two elements, the first being the maximum value of the
objective function, the other a list of replacement rules, each giving the estimate for the
parameters in the last argument to pairwiseMSE. A typical usage might look like:

ans = pairwiseMSE[objective, dataArray, {b, g}]

where ans was equal to

{12167., {b -> 4.93183, g -> 2.80412}}

5.4 Generate Confidence Regions
Fox (2006) discusses the conditions necessary for the pairwise maximum score esti-
mator to be point-identified. To achieve point-identification, the production function
must have as a parameter some characteristic that has continuous support over R. In
the absence of such a characteristic, the estimator will be set-identified. The Match Es-
timation toolkit provides three functions for generating confidence regions, one that as-
sumes a point-identified estimator, and two that assume a set-identified estimator. The

11

set-identified functions can be used on point-identified models, but the point-identified
estimator takes much less time to run and can produce a less conservative estimate.

The routine to generate a confidence region under point identification is called
pointIdentifiedCR. This routine takes seven arguments. The first argument
specifies the size of each subsample to be generated and the second argument spec-
ifies the number of subsamples to use in constructing the approximation to the esti-
mator’s distribution. The third argument is a list containing the point estimate from
pairwiseMSE, the fourth argument is the objective function, and the fifth argument
is a list containing the names of the variables being estimated. The final two arguments
are the data map and data array described in the preceding section. For example,

pointIdentifiedCR[10, 200, estimate, q, {b}, dataMap, dataArray,
asymptotics->coalitions]

In this case, the routine will calculate 200 subsamples, each with 10 elements. The
objective function is q, and the name of the variable being estimated is b. By de-
fault,pointIdentifiedCR produces asymmetric confidence regions. To produce
symmetric confidence regions give pointIdentifiedCR the option symmetric->True.

As explained in section 4.1, there are two types of asymptotics available: asymp-
totics as the number of nests increases, and asymptotics as the number of coalitions ob-
served in the market increases. For calculating the confidence region with nest asymp-
totics, the option asymptotics->nests should be passed to pointIdentifiedCR;
otherwise the option asymptotics->coalitions should be passed. This means
that the meaning of the first parameter depends on the type of asymptotics: if the
asymptotics are in the number of nests, then the first argument is the number of nests
in a subsample, and if the asymptotics are in the number of coalitions observed then
the first argument is the number of coalitions in a subsample. If the asymptotics
option is not given, the default behavior is nest asymptotics. It goes without saying that
the data in the data map should correspond to the correct type of asymptotics for your
purposes; if you are using nest asymptotics, you should put the nest number of each
inequality in the corresponding slot of the data map.

The routine to generate a set-identified confidence region is called setIdentifiedCR.
This routine takes the exact same arguments and options as pointIdentifiedCR,
except that it cannot generate symmetric confidence regions (if the symmetric option
is given, it is ignored).

A third routine, sampleSetIdentifiedCR, provides an alternative way to get
information about the set-identified confidence region. Instead of calculating an axis-
aligned bounding box for the confidence region, sampleSetIdentifiedCR gen-
erates random points in a neighborhood of the estimate and returns only those that are
found to be inside the confidence region. The number and variance of the trial points
are both user-configurable. The arguments to the function are similar to those of the
other two routines:

sampleSetIdentifiedCR[10, 200, 3000, estimate, q, {b}, dataMap,
dataArray, asymptotics->nests, samplingVariance->10]

12

The first two arguments are the same as for setIdentifiedCR. The third argument
is the number of trial points to attempt. The rest of the arguments are the same as
setIdentifiedCR, except that there is a new parameter, samplingVariance.
Care should be taken when using this routine to ensure that the samplingVariance
parameter is appropriate to the scale of the estimates.

Because subsampling is a resampling procedure, there is no guarantee that the esti-
mated confidence regions (which are generated from subsets of the input data) contain
the point estimates, from the full sample.

The technique used by pointIdentifiedCR is subsampling, as described in
Politis et al. (1999). The algorithm for generating set-identified confidence regions is
the one described in Shaikh (2005). Since both routines for set-identified inference
take so long to run, they output the intermediate steps of the optimization routine as
they run.

6 Advanced Topics

6.1 Controlling the Maximization Parameters
Optimization of the objective function is performed by Mathematica’s NMaximize
function. By default, the method used is Differential Evolution. Differential Evolution
is an excellent method for performing global maximization on a non-smooth objective
function, which is the main task in maximum score estimation. Since the Differential
Evolution algorithm is stochastic, there can be situations where it is desirable to man-
ually control the algorithm’s tuning parameters by setting the options used in the call
to NMaximize. This can be done by setting the nMaximizeOptions option in the
call to pairwiseMSE or any variant, as well as any of the subsampling routines.

The nMaximizeOptions rule should be a rule that evaluates to a list of rules
that will be passed directly into a call to NMaximize. For example, the default value
of the option is:

nMaximizeOptions->{Method->{”DifferentialEvolution”}}

Note that Method is an option that NMaximize accepts, and that the option must
take the form of a list of replacement rules. It is highly recommended that Differential
Evolution be used for maximum score estimation, but the DE algorithm itself has many
tuning parameters that can be changed in the options to the Method option. For ex-
ample, suppose that we want to set the number of initial points (one of the parameters
of the DE algorithm) to a specific value, and we want to also set the maximum number
of iterations (one of the parameters to NMinimize itself). We can use the following
call to pairwiseMSE:

pairwiseMSE[q,dataArr, {b,g}, nMaximizeOptions->{Method->
{”DifferentialEvolution”, “InitialPoints”->50},
MaxIterations->200}]

13

Note how options for the DE algorithm go in the list of options for the Method pa-
rameter, while options for NMaximize itself are on their own. All of the options for
NMaximize, as well as all of the global optimization algorithms it can use and all
of their options, are explained in detail in the Advanced Documentation section of the
documentation for NMinimize.

Although the Differential Evolution algorithm is stochastic, by default NMaximize
uses the same random seed for each invocation. This means that each time the algo-
rithm is run it will return the same answer. In general this is a good default behavior,
but sometimes you may wish to run multiple different attempts to maximize the same
problem with different random behavior each time. To do this, you should set the
RandomSeed option in the options to Differential Evolution to something different
for each run. For example, to ensure a different random seed every time, we could set
the RandomSeed option to be the output of a time command. For example:

pairwiseMSE[q,dataArr,{b,g}, nMaximizeOptions->{Method->
{”DifferentialEvolution”,”RandomSeed”->Floor[SessionTime[]]}}]

6.2 Performance Tips
Section 5.2 presented an example payoff function and one of the inequalities of the
payoff function induced:

1[xiy j +βwiz j + xqyu +βwqzu > xiyu +βwizu + xqy j +βwqz j]

Each row of the data array would then contain the eight values
xiy j,wiz j,xqyu,wqzu,xiyu,wizu,xqy j,wqz j

An objective function could access these eight values as the first through eighth el-
ements of a column of the data array, so that for the ith inequality, these would be
dataArray[[1, i]] through dataArray[[8, i]]. A naive implementation
of the objective function would be

objective[data_,b_] := Module[{total, i},
total = 0;
For[i=1, i <= Length[data], i = i+1,

total += If[data[[1,i]] + b*data[[2,i]]+data[[3,i]]+b*data[[4,i]] >
data[[5,i]]+b*data[[6,i]]+data[[7,i]]+b*data[[8,i]],1,0];

] ;
total

]

This is a valid objective function, but it can be made to run significantly faster, cutting
estimation time from hours to minutes.

The first thing to notice is that the expression being calculated can be simplified
further by collecting terms.

14

xiy j +βwiz j + xqyu +βwqzu > xiyu +βwizu + xqy j +βwqz j

⇔ (xiy j + xqyu− xiyu− xqy j)+β ∗ (wiz j +wqzu−wizu−wqz j)> 0 (1)

A simple optimization would be to compute the values in the parentheses as the ele-
ments of the data array, reducing the number of math operations that must be performed
on each inequality. The objective function would then become

objective[data_,b_] := Module[{total, i},
total = 0;
For[i=1, i <= Length[data], i = i+1,

total += If[data[[1,i]] + b*data[[2,i]] > 0,1,0];
] ;
total

]

This code does significantly less math in the inner loop, which will speed up the eval-
uation of every routine that depends on the objective function.

The next improvement is to take advantage of Mathematica’s vectorization capa-
bilities. When the operation performed inside a loop is relatively quick, as above, the
loop overhead (keeping track of iterations, deciding whether to iterate again, updat-
ing variables, etc) can be a significant cost in terms of speed. One way to avoid this
loop overhead is to rephrase the computation in terms of vectorizable math and matrix
operations.

Simple arithmetic operations that are performed on atomic values can also be per-
formed element-by-element on entire vectors. For example, adding together two vec-
tors of numbers produces a vector of the resulting sums:

In[1] := {1,2,3} + {9, 8, 7}
Out[1] = {10, 10, 10}

All of Mathematica’s basic arithmetic operators can be vectorized. The advantage of
using vectorization is that the loop overhead is reduced, and the resulting operations can
run an order of magnitude more quickly. The objective function can thus be rewritten
as

objective[data_,b_] := Module[{values, onesorzeros},
values = data[[1]] + b*data[[2]];
onesorzeros = values / Abs[values] + 1.0;
Total[onesorzeros] /2.

]

The first line of the objective function creates a vector of the values on the left hand
side of the inequality in equation 1. The second line tests each of these values to be
greater than or less than zero, and assigns a 2 if they are greater than zero, and a 0

15

otherwise. The final line sums up the elements of the array of “ones” (really twos)
and zeros and divides by two to compensate for the fact that in the previous line we
really wanted to assign ones instead of twos, so that the score is half of the sum of the
onesorzeros variable1. The reason for this bizarre procedure is that Mathematica
can vectorize division, addition, and the absolute value operation, but it cannot vector-
ize an If statement. Therefore, this is just a clever way to vectorize that operation.

For a second, much more involved example, suppose the production function is

fβ1,β2(i, j) = ris j/(xiy j)
β1 +β2wiz j

where a scale normalization has already been performed. A typical inequality would
be

1[ris j/(xiy j)
β1 +β2wiz j+rqsu/(xqyu)

β1 +β2wqzu > risu/(xiyu)
β1 +β2wizu+rqsi/(xqyi)

β1 +β2wqzi]

In this example, dataArray[[1, i]] through dataArray[[10, i]] would contain

{ris j,xiy j,(wiz j +wqzu),rqsu,xqyu,risu,xiyu,(wizu +wqzi),rqsi,xqyi}

for each inequality i. A highly optimized objective function would then be

objective[data_,b1_,b2_] := Module[{values, onesorzeros},
values = data[[1]]/(data[[2]]^b1)+b2*data[[3]]

+data[[4]]/(data[[5]]^b1) + data[[6]]/(data[[7]]^b1)
+b2*data[[8]]+data[[9]]/(data[[10]]^b1);

onesorzeros = values / Abs[values] + 1.0;
Total[onesorzeros] /2.

]

This example demonstrates that very general functional forms can be estimated effi-
ciently by the toolkit; there is no limitation to linear functional forms.

One final speed tip is to be sure to use the Developer‘ToPackedArray func-
tion to ensure that the data array and the data map are packed arrays. Packed arrays are
restricted to machine-sized integer or floating point numbers, but Mathematica is able
to perform operations on them much more quickly. To convert an array into a packed
array, all you need to do is execute the line

packedArray = Developer‘ToPackedArray[array]

The Mathematica documentation contains more details about what packed arrays are
and how to use them.

1Obviously, dividing by two is unnecessary, since the maximum is the same either way, but you might be
interested in the score that the maximum occurs at.

16

6.3 Smoothed Maximum Score
Horowitz (1992) discusses an interesting variation on maximum score. Horowitz’s es-
timator has a smooth objective function (which is easier to optimize numerically), is
asymptotically normal, and has a faster rate of convergence than standard maximum
score. The smoothed maximum score estimator is implemented by replacing the indi-
cator function 1[·> 0] in the maximum score objective function with a kernel K(·). The
kernel K has the properties that K(v) is finite-valued for all v, lim v→−∞K(v) = 0 and
lim v→∞K(v) = 1. Unlike in standard kernel estimators, K resembles a CDF instead of
a PDF. In the case of pairwise maximum score, this means that inequalities that are not
satisfied receive very little weight, and inequalities that are satisfied by a large margin
receive the most weight.

Horowitz’s estimator is easily implemented in the Match Estimation toolkit by re-
placing the indicator function with the desired kernel in the user’s objective function.
In this case, the maximum score objective function will no longer be integer-valued,
but the software never makes such an assumption and so estimation will proceed with-
out difficulty. However, estimating confidence regions becomes more difficult, since
Horowitz’s estimator has a different rate of convergence, which the confidence region
routines are not currently written to use. Therefore, the user will have to take the
source code from the file MatchEstimation.m and change the rate of convergence
by hand to that derived by Horowitz. An even better option would be to use a boot-
strap, since Horowitz (2002) shows that the bootstrap is consistent for the smoothed
maximum score estimator.

References
Abrevaya, Jason and Jian Huang, “On the bootstrap of the maximum score estima-

tor,” Econometrica, 2005, 73 (4), 1175–1204.

Akkus, Oktay, “The Determinants of Bank Mergers: A Revealed Preference Analy-
sis,” 2006.

Bajari, Patrick and Jeremy Fox, “Complementarities and Collusion in an FCC Auc-
tion,” 2005.

Chernozhukov, Victor, Han Hong, and Elie Tamer, “Parameter Set Inference in a
Class of Econometric Models,” 2005.

Fox, Jeremy, “Estimating Matching Games with Transfers,” 2006.

Han, Aaron K., “Nonparametric Analysis of a Generalized Regression Model,” Jour-
nal of Econometrics, 1987, 35, 303–316.

Horowitz, Joel, “A Smoothed Maximum Score Estimator for the Binary Response
Model,” Econometrica, 1992, 60 (3), 505–531.

, “Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Esti-
mator,” Journal of Econometrics, 2002, 111 (2), 141–167.

17

Kim, Jeankyung and David Pollard, “Cube Root Asymptotics,” The Annals of Statis-
tics, 1990, 18 (1), 191–219.

Manski, Charles F., “Maximum Score Estimation of the Stochastic Utility Model of
Choice,” Journal of Econometrics, 1975, 3 (3), 205–228.

Politis, Dimitris N., Joseph P. Romano, and Michael Wolf, Subsampling, Springer
New York, 1999.

Shaikh, Azeem, “Inference for Partially Identified Econometric Models,” 2005.

Sherman, Robert P., “The Limiting Distribution of the Maximum Rank Correlation
Estimator,” Econometrica, 1993, 61 (1), 123–137.

Appendix: Function Reference
This section provides a brief description for every routine in the Match Estimation
toolkit.

vec
vec[mtx_]
Stacks the columns of a matrix into a vector.

unvec
unvec[v_, rows_]
Takes a vector and “unstacks” it into a matrix with the
number of rows given by the rows parameter.

numCoalitions
numCoalitions[matchIdxMtx_]
Takes a match matrix and returns the total number of coalitions
across all markets in the match matrix.

generateRandomSubsample

generateRandomSubsample[ssSize_, groupIDs_, dataArray_]
Generates a subsample of a given size from a data array.

Parameters:
ssSize - Size of the subsample generated, in terms of the number of

distinct entities that will be represented in the subsample
(nests or coalitions).

18

groupIDs - A data map that the routine will use to examine the rows
of the data array for possible inclusion into the subsample.

dataArray - A data array structure suitable for passing into the
objective function.

generateAssignmentMatrix

generateAssignmentMatrix[payoffs_, quotaU_:1, quotaD_:1,
options___?OptionQ]

Generates the optimal assignment of matches from the given matrix of
payoffs for each match. In an assignment matrix, each entry (i,j) is
1 if i and j are matched and 0 otherwise.

Parameters:
payoffs - A list of matrixes, one for each market, where the (i,j)th

element is the total production from matching i and j.
quotaU - Maximum number of partners each upstream agent can

have. Default = 1.
quotaD - Maximum number of partners each downstream agent can

have. Default = 1.

matchIndexMatrix
matchIndexMatrix[assignmentMatrices_, quotaU_:1]
Takes a list of assignment matrixes (see generateAssignmentMatrix) and
generates a list of triply-indexed matrixes with the i’th element
containing the index of i’s match. Each element in the list is a list
with two elements, and each of those is a list of lists. The two
elements within each market represent the two sides of the market,
upstream and downstream, in that order. In the upstream half,
the i’th element will be a list with an entry for the i’th coalition
in the market; each of these lists will contain all of the
identifiers of the upstream market participants in that coalition.
The downstream half will contain the same number of entries, each of
which is a list of the downstream members of the coalition.

An example will clarify:

{
{

{{1},{2},{3}},
{{4,5},{6,7},{8,9}}

},
{

{{10,11},{12,13},{14,15}},

19

{{16},{17},{18}}
}

}

In this very simple example, there are two markets. In the first,
there are three coalitions, each of which has one upstream agent
and two downstream agents. In the second market, there are also
three coalitions, each of which has two upstream agents and one
downstream agent.

If the second argument is given, it makes a match matrix which
has a list of length quotaU in each element. The second for is for
multiple matching; unfortunately, you need to specify this, because it
is not always clear from an assignment matrix alone what the quota was
(it might not have been optimal to take advantage of the possibility of
multiple matching).

Parameters:
assignmentMatrices - An assignment matrix, as returned from

generateAssignmentMatrix.
quotaU - The maximum number of agents an upstream agent

can match with. Default = 1.

allPairsInequalityList
allPairsInequalityList[matchMtx_]
Takes a match matrix and returns a list of every possible
pairwise swap, where each one is of the form
{{n, i1, p1}, {n, i2, p2}}, n is a nest index, i1 and i2 are
upstream agents, and p1 and p2 index one of each of their
downstream partners.

randomInequalityList

randomInequalityList[matchMtx_, inequalitiesPerNest_]
Takes a match matrix and generates a random sample of inequalities
(unlike allPairsInequalityList, which generates all of them).
Parameters:

matchMtx - A match matrix.
inequalitiesPerNest - The number of inequalities to pick for each

nest. Repeated inequalities cannot be ruled out without
performing the lengthy computation this function is designed to
avoid, so this parameter should be significantly smaller than
the number of possible inequalities per nest.

20

pairwiseMSE

pairwiseMSE[q_, dataArray_, args_, options___?OptionQ]
Generates an estimate using the pairwise maximum score estimator.

Parameters:
q - An objective function, which takes a data array and a sequence of

scalar arguments as parameters.
dataArray - The data array parameter to use in the objective function.
args - A list of unique symbols equal in length to the number of

parameters to estimate. The return value from pairwiseMSE will
contain a list of replacement rules keyed on the elements of args.

options - An optional parameter for maximization options.
The only recognized option is nMaximizeOptions, discussed above.

pointIdentifiedCR

pointIdentifiedCR[ssSize_, numSubsamples_, pointEstimate_, objFunc_,
args_, groupIDs_, dataArray_, options___?OptionQ]

Generates a confidence region estimate using subsampling.

Parameters:
ssSize - The size of each subsample to be estimated.
numSubsamples - The number of subsamples to use in estimating

the confidence region.
pointEstimate - The point estimate to build the confidence region.
objFunc - The objective function used in pairwiseMSE.
args - A list of unique symbols used in pairwiseMSE.
groupIDs - A data map used to generate the subsamples.
dataArray - The dataArray parameter used in pairwiseMSE.
options - An optional parameter specifying options. Available options:

progressUpdate - How often to print progress (0 to disable).
Default = 0.

confidenceLevel - The confidence level of the region.
Default = .95.

asymptotics - Type of asymptotics to use (nests or coalitions).
Default = nests.

subsampleMonitor - An expression to evaluate for each subsample.
Default = Null.

symmetric - True or False. If True, the confidence region will
be symmetric about the estimate.
Default = False.

21

setIdentifiedCR

setIdentifiedCR[ssSize_, numSubsamples_, pointEstimate_, objFunc_,
args_, groupIDs_, dataArray_, options___?OptionQ]

Generates a confidence region estimate using the set-identified
procedure in Shaikh (2006). The parameters are exactly the same
as pointIdentifiedCR except that symmetric is not an option.

sampleSetIdentifiedCR

sampleSetIdentifiedCR[ssSize_, numSubsamples_, numSamplePoints_,
pointEstimate_, objFunc_, args_, groupIDs_,
dataArray_, options___?OptionQ]

Generates a random set of points that are inside a set-identified
confidence region.

Parameters:
ssSize - The size of each subsample to be estimated.
numSubsamples - The number of subsamples to use in estimating the

confidence region.
numSamplePoints - The number of points to randomly sample. Some

subset of these points will hopefully be found to be inside the
confidence region, and thus returned in the output.

pointEstimate - The point estimate to build the confidence region
around (typically the output of pairwiseMSE).

objFunc - The objective function used in pairwiseMSE.
args - A list of unique symbols used in pairwiseMSE.
groupIDs - A data map used to generate the subsamples.
dataArray - The dataArray parameter used in pairwiseMSE.
options - An optional parameter specifying options.

progressUpdate - How often to print progress (0 to disable).
Default = 0.

confidenceLevel - The confidence level of the region.
Default = .95.

asymptotics - Type of asymptotics to use (nests or coalitions).
Default = nests.

subsampleMonitor - An expression to evaluate for each subsample.
Default = Null.

samplingVariance - The variance of the distribution used to draw
the sample points. Default = 20.

22

